DOI QR코드

DOI QR Code

Influence of the Recombination Parameters at the Si/SiO2 Interface on the Ideality of the Dark Current of High Efficiency Silicon Solar Cells

  • Kamal, Husain (Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University) ;
  • Ghannam, Moustafa (Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University)
  • 투고 : 2014.12.22
  • 심사 : 2015.02.14
  • 발행 : 2015.04.30

초록

Analytical study of surface recombination at the $Si/SiO_2$ interface is carried out in order to set the optimum surface conditions that result in minimum dark base current and maximum open circuit voltage in silicon solar cells. Recombination centers are assumed to form a continuum rather than to be at a single energy level in the energy gap. It is shown that the presence of a hump in the dark I-V characteristics of high efficiency PERL cells is due to the dark current transition from a high surface recombination regime at low voltage to a low surface recombination regime at high voltage. Successful fitting of reported dark I-V characteristics of a typical PERL cell is obtained with several possible combinations of surface parameters including equal electron and hole capture cross sections.

키워드

참고문헌

  1. M. Green, K. Emery, Y. Hishikawa, W. Warta, and E. Dunlop, "Solar cell efficiency tables (version 39)", Progress in Photovoltaics: Research and Application, Vol.20, No.11, pp.12-20, 2012. https://doi.org/10.1002/pip.2163
  2. J. Zhao, A. Wang, and M. A. Green, "High efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates", Solar Energy Materials and Solar Cells, Vol.65, No.(1-4), pp.429-435, 2001. https://doi.org/10.1016/S0927-0248(00)00123-9
  3. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, and E. Maruyama, "24.7% record efficiency HIT solar cell on thin silicon wafer", IEEE Journal Of Photovoltaics, Vol.4, No.1, pp.96-99, 2014. https://doi.org/10.1109/JPHOTOV.2013.2282737
  4. K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto, "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell", IEEE Journal of Photovoltaics, Vol.4, No.6, pp.1433-1435, 2014. https://doi.org/10.1109/JPHOTOV.2014.2352151
  5. W. Shockley, and W. T. Read, "Statistics of the recombination of holes and electrons", Physical Review, Vol.87, No.5, pp.835-842, 1952. https://doi.org/10.1103/PhysRev.87.835
  6. S. Steingrube, R. Brendel, and P. Altermatt, "Limits to model amphoteric defect recombination via SRH statistics", Physica Status Solidi A, Vol.209, pp.390-400, 2012. https://doi.org/10.1002/pssa.201127277
  7. M. Y. Ghannam, and H. A. Kamal, "Modeling surface recombination at the p-type $Si/SiO_2$ interface via dangling bond amphoteric centers", Advances in Condensed Matter Physics, Hindawi Publishing Corporation, Vol.2014, Article ID.857907, 9 pages. 2014.
  8. S. Olibet, E. Vallat-Sauvain, L. Fesquet, C. Monachon, A. Hessler-Wyser, J. Damon-Lacoste, S. De Wolf, and C. Ballif, "Properties of interfaces in amorphous/crystalline silicon heterojunctions," Physica Status Solidi A, Vol.207, pp. 651-656, 2010. https://doi.org/10.1002/pssa.200982845
  9. W. Fussel, M. Schmidt, H. Angermann, G. Mende, and H. Flietner, "Defects at the $Si/SiO_2$ interface: their nature and behaviour in technological process and stress", Nuclear Instruments and Methods in Physics Research A, Vol.377, pp. 177-183, 1996. https://doi.org/10.1016/0168-9002(96)00205-7
  10. P. J. Caplan, E. H. Poindexter, B. E. Deal and R. R. Razouk, "ESR centers, interface states, and oxide fixed charge in thermally oxidized silicon wafers," Journal of Applied Physics, Vol.50, pp.5847-5854, 1979. https://doi.org/10.1063/1.326732
  11. R. R. Razouk and B. E. Deal, "Dependence of interface state density on silicon thermal oxidation process variables", Journal of the Electrochemical Society, Vol.126, pp.1573-1581, 1979. https://doi.org/10.1149/1.2129333
  12. M. Y. Ghannam, R. P. Mertens, R. De Keersmaecker, and R. J. van Overstraeten, "Electrical characterization of the boron-doped $Si-SiO_2$ interface", IEEE Transactions on Electron Devices, Vol.32, pp.1264-1271, 1985. https://doi.org/10.1109/T-ED.1985.22110
  13. C. T. Sah and W. Shockley, "Electron-hole recombination statistics in semiconductors through flaws with many charge conditions", Physical Review, Vol.109, No.4, pp.1103-1115, 1958. https://doi.org/10.1103/PhysRev.109.1103
  14. S. Glunz, D. Biro, S. Rein, and W. Warta, "Fieldeffect passivation of the $SiO_2-Si$ interface", Journal of Applied Physics, Vol.86, No.1, pp.683-691, 1999. https://doi.org/10.1063/1.370784
  15. J. Zhao, A. Wang, X. Dai, M.A. Green and S. Wenham, "Improvements in silicon solar cell performance", Proceedings of the 22nd IEEE Photovoltaic Specialists Conference, pp.399-402, Las Vegas, NV, USA, 1991.
  16. A. B. Sproul, M.A. Green, and J. Zhao, "An Improved value for the silicon intrinsic carrier concentration at 300 K", Applied Physics letters, Vol.57, pp.255-257, 1990. https://doi.org/10.1063/1.103707
  17. J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M.C.M Van de Sanden, W.M.M. Kessels, "Surface passivation of high efficiency silicon solar cells by atomic-layer -deposited $Al_2O_3$," Progress in Photovoltaics; Research and Applications, vol. 16, no. 6, pp. 461-466, 2008. https://doi.org/10.1002/pip.823