DOI QR코드

DOI QR Code

수직 모노폴 방사패턴을 갖는 인체표면 통신용 평면형 안테나 설계

Design of a Planar Antenna with Monopole-like Radiation Pattern for On-Body Communications

  • 권재광 (한양대학교 전자컴퓨터통신공학과) ;
  • 우승민 (한양대학교 전자컴퓨터통신공학과) ;
  • 탁진필 (한양대학교 전자컴퓨터통신공학과) ;
  • 최재훈 (한양대학교 전자컴퓨터통신공학과)
  • Kwon, Jaekwang (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Woo, Seungmin (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Tak, Jinpil (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Choi, Jaehoon (Department of Electronics and Computer Engineering, Hanyang University)
  • 투고 : 2014.12.12
  • 심사 : 2015.03.24
  • 발행 : 2015.04.30

초록

본 논문에서는 수직 모노폴 방사 패턴을 갖는 인체표면 간 통신을 위한 평면형 안테나를 제안하였다. 제안된 안테나는 3개의 split-ring 구조를 사용하여 모노폴과 같은 표면지향성 방사특성을 가지며, 인체착용 환경을 고려하여 저자세를 갖도록 설계하였다. 제안된 안테나는 5.8 GHz ISM 대역(5.725~5.875 GHz)에서 $0.29{\lambda}_0{\times}0.29{\lambda}_0{\times}0.008{\lambda}_0$의 크기를 갖는다. 인체의 영향을 고려하기 위해 2/3 근육-등가 반고체형 모의인체를 제작 및 사용하였으며, 제안된 안테나는 반고체형 모의인체 위에서 280 MHz(5.68~5.96 GHz)의 10-dB 반사손실 대역폭을 갖고, 1.96 dBi의 최대 이득을 갖는다.

In this paper, a planar antenna with monopole-like radiation pattern for on-body communications is proposed. The proposed antenna consists of three split-rings(SR) to generate a monopole-like radiation characteristic. To account for the on-body application, the proposed antenna is designed to have a low-profile. The antenna has an overall dimensions of $0.29{\lambda}_0{\times}0.29{\lambda}_0{\times}0.008{\lambda}_0$ at 5.8 GHz industrial, scientific, and medical(ISM) band(5.725~5.875 GHz). To verify the body effect, a two-thirds muscle equivalent semi solid phantom is fabricated and used to measure the antenna performance. The 10-dB return loss bandwidth is 280 MHz(5.68~5.96 GHz) and the measured peak gain is 1.91 dBi.

키워드

참고문헌

  1. 이성협, 윤양문, 김도현, "IEEE 802.15.6 중심의 WBAN 국내외 표준화 동향", 한국통신학회지, 25(2), pp. 11-17, 2008년 2월.
  2. M. Patel, J. Wang, "Applications, challenges, and prospective in emerging body area networking technologies", IEEE Wireless Communications, vol. 17, no. 1, pp. 80-88, Feb. 2010. https://doi.org/10.1109/MWC.2010.5416354
  3. Y. Rahmat-Samii, J. Kim, Implanted Antennas in Medical Wireless Communications, chapter 1, Morgan & Claypool Publishers, San Rafael, Calif, USA, 2006.
  4. P. S. Hall, Y. Hao, Antennas and Propagation for Bodycentric Wireless Communications, Norwood, MA: Artech House, Ch. 1, 2006.
  5. P. S. Hall, Y. Hao, Y. I. Nechayev, A. Alomainy, C. C. Constantinou, C. Parini, M. R. Kamarudin, T. Z. Salim, D. T. M. Hee, R. Dubrovka, A. S. Owadally, W. Song, A. Serra, P. Nepa, M. Gallo, and M. Bozzetti, "Antennas and propagation for on-body communication systems", IEEE Antennas Propagat. Mag., vol. 49, no. 3, pp. 41-58, Jun. 2007. https://doi.org/10.1109/MAP.2007.4293935
  6. J. Tak, J. Choi, "Circular-ring patch antenna with higher order mode for on-boby communications", Microwave and Optical Technology Letters, vol. 56, no. 7, pp. 1543-1547, Jul. 2014. https://doi.org/10.1002/mop.28374
  7. A. Al-Zoubi, F. Yang, and A. Kishk, "A low-profile dual-band surface wave antenna with a monopole-like pattern", IEEE Transactions on Antennas and Propagation, vol. 55, no. 12, pp. 3404-3412, Dec. 2007. https://doi.org/10.1109/TAP.2007.910310
  8. F. Yang, Y. Rahmat-Samii, and A. Kishk, "Low-profile patch-fed surface wave antenna with a monopole-like radiation pattern", IET Microw. Aatennas Propag., vol. 1, no. 1, pp. 261-266, Feb. 2007. https://doi.org/10.1049/iet-map:20050290
  9. Da Ma, Wenxun X. Zhang, "Coupling-fed circular-patch antenna for on-body communication system", Microwave and Optical Technology Letters, vol. 51, no. 11, pp. 2623-2627, Nov. 2009. https://doi.org/10.1002/mop.24712
  10. V. Hebelka, Z. Raida, "Koch slot loop antenna for wireless body-centric communication", Microwave and Optical Technology Letters, vol. 51, no. 11, pp. 764-766, Mar. 2014. https://doi.org/10.1111/joms.12082
  11. D. Guha, Y. M. M. Antar, "New half-hemispherical dielectric resonator antenna for broadband monopole- type radiation", IEEE Trans. Antennas Propagat., vol. 54, no. 12, pp. 3621-3628, Dec. 2006. https://doi.org/10.1109/TAP.2006.886547
  12. S. G. O'Keefe, S. P. Kingsley, "Tunability of liquid dielectric resonator antennas", IEEE Antennas and Wireless Propagation Letters, vol. 6, no. 10, pp. 533-536, 2007. https://doi.org/10.1109/LAWP.2007.907916
  13. S. Yoo, S. Kahng "CRLH ZOR antenna of a circular microstrip patch capacitively coupled to a circular shorted ring", PIER C, vol. 25, pp. 15-26, 2012. https://doi.org/10.2528/PIERC11072803
  14. 장건호, 강승택, "직각 링과 용량성 결합된 마이크로스트립 패치 구조의 새로운 2차원 메타 재질 구조 CRLH 0차 공진 안테나의 설계", 한국전자파학회논문지, 21(2), pp. 143-151, 2010년 2월. https://doi.org/10.5515/KJKIEES.2010.21.2.143
  15. Jisoo Baek, Youngki Lee, and Jaehoon Choi, "A wider band zeroth-order resonance antenna for wireless body area network applications", IEICE Transaction on Communication, pp. 2348-2354, vol. E96-B, no. 10, Oct. 2013. https://doi.org/10.1587/transcom.E96.B.2348
  16. 탁진필, 전재성, 김선우, 최재훈, "인체 표면 통신을 위한 TM31 고차 모드 반원-링 인체 부착형 마이크로스트립 패치 안테나 설계", 한국전자파학회논문지, 25(5), pp. 491-503, 2014년 5월. https://doi.org/10.5515/KJKIEES.2014.25.5.491
  17. R. Garg, P. Bhartia, IBahl, and A. Ittipiboon, Microstrip antenna Design Handbook, Norwood, MA: Artech House, pp. 441-463, Ch. 7, 2001.
  18. R. Khouri, P. Ratajczak, P. Brachat, and R. Staraj, "A thin surface-wave antenna using a via-less EBG structure for 2.45 GHz on-body communication systems," Proc. 4th Eur. Conf. Antennas and Propagat. (EuCAP), Apr. 2010.
  19. J. Vicente, A. A. Moreira, "Electro-textile printed slot antenna over finite EBG structure", Antenna Technology (iWAT), pp. 1-4, 2010.
  20. SEMCAD, X. : A FDTD-based electromagnetic simulator, ver. 14.8.6 Bernina, Schmid and Partner Eng. AG, Zurich, Switcherland, 2015.
  21. HFSS: High Frequency Structure Simulator Based on Finite Element Method, v.15.0 ANSYS Corp., 2015.
  22. C. Gabriel, "4-cole-cole analysis on compilation of the dielectric properties of body tissues at RF and microwave frequency", Boorks Air Force Tech. Rep. AL/OERT-1996-0037, 1996.
  23. [Online]. Available : http://transition.fcc.gov/oet/rfsafety/dielectric.html
  24. A. Christ, W. Kainz, E. G. Hahn, K. Honegger, M. Zefferer, E. Neufeld, W. Rascher, R. Janka, W. Bautz, J. Chen, B. Kiefer, P. Schmitt, H. Hollenbach, J. Shen, M. Oberle, D. Szczerba, A. Kam, J. W. Guag, and N. Kuster, "The virtual family-development of surface-based anatomical models of two adults and two children for dosimetric simulations", Phys. Med. Biol., vol. 55, no. 2, N23-N38, Jan. 2010. https://doi.org/10.1088/0031-9155/55/2/N01
  25. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95. 1-1999, 1999.