DOI QR코드

DOI QR Code

개의 장내 병원균의 동시 검출을 위한 다중 실시간 중합효소연쇄반응분석 패널개발

Development of a Panel of Multiplex Real-Time Polymerase Chain Reaction Assays for Simultaneous Detection of Canine Enteric Bacterial Pathogens

  • Jang, Hye-Jin (Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University) ;
  • Han, Jae-Ik (Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University) ;
  • Kang, Hyo-Min (Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University) ;
  • Na, Ki-Jeong (Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University)
  • 심사 : 2015.04.23
  • 발행 : 2015.04.30

초록

개에서 설사를 일으키는 주요 원인이 되는 장내 병원균으로 Salmonella spp., Shigella spp., Campylobacter spp., Clostridium spp.가 있다. 이들 세균은 배양으로 검출이 어렵다. 본 실험에서는 Salmonella spp., C. coli, C. jejuni, 그리고 Cl. perfringens를 신속하고 민감하게 검출할 수 있는 방법을 고안하였다. 정상견 71마리와 설사증상이 있는 66마리에서 수집한 분변 시료에서 장내 병원균의 유병률을 알아보고자 하였다. 장내 병원균은 실시간 중합효소 연쇄 반응 분석을 이용하여 검출하였다. 설사변에서 Salmonella spp., C. coli, C. jejuni, Cl. Perfringens는 정상변보다 검출률이 높았다. 개발한 다중실시간 중합효소연쇄반응은 분변시료의 병원균 존재 및 양 또는 기타 고유 서열을 확인하는데 유용하였다.

A major cause of diarrhea in a dog is an infection with bacteria which include Salmonella spp., Campylobacter (C.) spp., and Clostridium (Cl.) spp.. It is fastidious to identify these bacteria by the culture. The purpose of this experiment is to devise the method for detecting Cl. perfringens, C. jejuni, C. coli, and Salmonella spp. with rapid and high sensitivity. The fecal samples collected from 71 normal and 66 diarrheic dog feces were used to compare the prevalence of the enteric pathogens and to develop a multiplex real-time polymerase chain reaction (PCR) assay for clinical use. Detection of Cl. perfringens, C. coli, and C. jejuni in diarrhea feces was higher than normal feces. A developed multiplex real-time PCR is useful for determining the presence and quantity of pathogen-specific or other unique sequences with in a fecal sample.

키워드

참고문헌

  1. Amani J, Mirhosseini SA, lmani Fooladi AA. A review approaches to identify enteric bacterial pathogens. Jundishapur J Microbiol 2015; 8: e17473.
  2. Belanger SD, Boissinot M, Clairoux N, Picard FJ, Bergeron MG. Rapid detection of Clostridium difficile in Feces by real-time PCR. J Clin Microbiol 2003; 41: 730-734. https://doi.org/10.1128/JCM.41.2.730-734.2003
  3. Bochelmann U, Domes HH, Ayuso-Gabella MN, Salgot de Marcay M, Tandoi V, Levantesi C, Masciopinto C, Van Houtte E, Szewzyk U, Wintqens T, Grohmann E. Quantitative PCR monitoring of antibiotic resistance genes and bacterial pathogens in three European artificial groundwater recharge systems. Appl Environ Microbiol 2009; 75: 154-163. https://doi.org/10.1128/AEM.01649-08
  4. Chaban B, Ngeleka M, Hill JE. Detection and quantification of 14 Campylobacter species in pet dogs reveals and increase in species richness in feces of diarrheic animals. BMC Microbiol 2010; 10: 1-7. https://doi.org/10.1186/1471-2180-10-1
  5. Daniel Paredes-Sabja, Sarker MR. Germination response of spores of the pathogenic bacterium Clostridiun perfringens and Clostridium difficile to cultured human epithelial cells. Anaerobe 2011; 17: 78-84. https://doi.org/10.1016/j.anaerobe.2011.02.001
  6. Jihong L, Vicki Adams, Trudi L. Bannam, Kazuaki M, Jorge P, Francisco A, Julian I, Bruce A. Toxin Plasmids of Clostridium perfringens. Microbiol Mol Biol Rev 2015; 79: 193-224. https://doi.org/10.1128/MMBR.00052-14
  7. Jokinen CC, Koot JM, Carrillo CD, Gannon VP, Jardine CM, Mutschall SK, Topp E, Taboada EN. An enhanced technique combining pre-enrichment and passive filtration increases the isolation efficiency of Campylobacter jejuni and Campylobacter coli from water and animal fecal samples. J Microbiol Methods 2012; 91: 506-513 https://doi.org/10.1016/j.mimet.2012.09.005
  8. Liu J, Gratz J, Amour C, Kibiki G, Becker S, Janaki L, Verweij JJ, Taniuchi M, Sobuz SU, Haque R, Haverstick DM, Houpt ER. A laboratory developed Taqman Array Card for simultaneous detection of nineteen enteropathogens. J Clin Microbiol 2013; 5: 472-480.
  9. Maddocks S, Olma T, Chen S. Comparison of CHROMagar Salmonella medium and xylose-lysine-desoxycholate and Salmonella-Shigella agars for isolation of Salmonella strains from stool samples. J Clin Microbiol 2002; 40: 2999-3003. https://doi.org/10.1128/JCM.40.8.2999-3003.2002
  10. Marks SL, Rankin SC, Byrne BA, Weese JS. Enteropathogenic Bacteria in Dogs and Cats: Diagnosis, Epidemiology, Treatment, and Control. J Vet Intern Med 2011; 25: 1195-1208. https://doi.org/10.1111/j.1939-1676.2011.00821.x
  11. Meer RR, Songer JG. Multiplex polymerase chain reaction assay for genotyping Clostridium perfringens. Am J Vet Res 1997; 58: 702-5.
  12. Mokhtari W, Nsaibia S, Gharbi A, Aouni M. Real-time PCR using SYBR Green for the detection of Shigella spp. in food and stool samples. Mol Cell Probes 2013; 27: 53-59. https://doi.org/10.1016/j.mcp.2012.09.002
  13. Rinttila T, Lyra A, Kroqius-Kurikka L, Palva A. Real-time PCR analysis of enteric pathogens from fecal samples of irritable bowel syndrome subjects. Gut Pathog 2011; 3: 6-14. https://doi.org/10.1186/1757-4749-3-6
  14. Russello G, Russo A, Sisto F, Scaltrito MM, Farina C. Laboratory diagnosis of Clostridium difficile associated diarrhoea and molecular characterization of clinical isolates. New Microbiol 2012; 35: 307-316.
  15. Skanseng B, Kaldhusdal M, Rudi K. Comparison of chicken gut colonisation by the pathogens Campylobacter jejuni and Clostridium perfringens by real-time quantitative PCR. Mol Cell Probes 2006; 20: 269-279. https://doi.org/10.1016/j.mcp.2006.02.001
  16. Volkmann H, Schwartz T, Bischoff P, Kirchen S, Obst U. Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). J Microbiol Methods 2004; 56: 277-286. https://doi.org/10.1016/j.mimet.2003.10.014

피인용 문헌

  1. Effect of prophylactic use of tulathromycin on gut bacterial populations, inflammatory profile and diarrhea in newborn Holstein calves vol.136, pp.None, 2015, https://doi.org/10.1016/j.rvsc.2021.02.026