참고문헌
- Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K., et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337-342. https://doi.org/10.1038/nature05354
- Becker, J.V., Armstrong, G.O., van der Merwe, M.J., Lambrechts, M.G., Vivier, M.A., and Pretorius, I.S. (2003). Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res. 4, 79-85. https://doi.org/10.1016/S1567-1356(03)00157-0
- Beekwilder, J., Wolswinkel, R., Jonker, H., Hall, R., de Vos, C.H., and Bovy, A. (2006). Production of resveratrol in recombinant microorganisms. Appl. Environ. Microbiol. 72, 5670-5672. https://doi.org/10.1128/AEM.00609-06
- Choi, O., Wu, C.Z., Kang, S.Y., Ahn, J.S., Uhm, T.B., and Hong, Y.S. (2011). Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli. J. Ind. Microbiol. Biotechnol. 38, 1657-1665. https://doi.org/10.1007/s10295-011-0954-3
- Delaunois, B., Cordelier, S., Conreux, A., Clement, C., and Jeandet, P. (2009). Molecular engineering of resveratrol in plants. Plant Biotechnol. J. 7, 2-12. https://doi.org/10.1111/j.1467-7652.2008.00377.x
- Foust, C.M. (1992). Rhubarb: The wondrous drug. (Princeton, NJ, USA: Princeton University Press).
- Fremont, L. (2000). Biological effects of resveratrol. Life Sci. 66, 663-673. https://doi.org/10.1016/S0024-3205(99)00410-5
- Horinouchi, S. (2009). Combinatorial biosynthesis of plant medicinal polyketides by microorganisms. Curr. Opin. Chem. Biol. 13, 197-204. https://doi.org/10.1016/j.cbpa.2009.02.004
- Jeong, Y.J., An, C.H., Woo, S.G., Jeong, H.J., Kim, Y.-M., Park, S.-J., Yoon, B.D., and Kim, C.Y. (2014). Production of pinostilbene compounds by the expression of resveratrol O-methyltransferase genes in Escherichia coli. Enzyme Microb. Tech. 54, 8-14. https://doi.org/10.1016/j.enzmictec.2013.09.005
- Kaneko, M., Ohnishi, Y., and Horinouchi, S. (2003). Cinnamate: coenzyme A ligase from the filamentous bacterium Streptomyces coelicolor A3(2). J. Bacteriol. 185, 20-27. https://doi.org/10.1128/JB.185.1.20-27.2003
- Kashiwada, Y., Nonaka, G., Nishioka, I., Nishizawa, M., and Yamagishi, T. (1988). Studies on rhubarb (Rhein Rhizoma). XIV. Isolation and characterization of stilbene glucosides from Chinese rhubarb. Chem. Pharm. Bull. 36, 1545-1549. https://doi.org/10.1248/cpb.36.1545
- Katsuyama, Y., Funa, N., Miyahisa, I., and Horinouchi, S. (2007). Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem. Biol. 14, 613-621. https://doi.org/10.1016/j.chembiol.2007.05.004
- Lee, S.K., Nam, K.A., Hoe, Y.H., Min, H.Y., Kim, E.Y., Ko, H., Song, S., Lee, T., and Kim, S. (2003). Synthesis and evaluation of cytotoxicity of stilbene analogues. Arch. Pharm. Res. 26, 253-257. https://doi.org/10.1007/BF02976951
- Lee, S.W., Hwang, B.S., Kim, M.H., Park, C.S., Lee, W.S., Oh, H.M., and Rho, M.C. (2012). Inhibition of LFA-1/ICAM-1- mediated cell adhesion by stilbene derivatives from Rheum undulatum. Arch. Pharm. Res. 35, 1763-1770. https://doi.org/10.1007/s12272-012-1008-8
- Melchior, F., and Kindl, H. (1990). Grapevine stilbene synthase cDNA only slightly differing from chalcone synthase cDNA is expressed in Escherichia coli into a catalytically active enzyme. FEBS Lett. 268, 17-20. https://doi.org/10.1016/0014-5793(90)80961-H
- Remsberg, C.M., Yanez, J.A., Ohgami, Y., Vega-Villa, K.R., Rimando, A.M., and Davies, N.M. (2008). Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother. Res. 22, 169-179. https://doi.org/10.1002/ptr.2277
- Rimando, A.M., Pan, Z., Polashock, J.J., Dayan, F.E., Mizuno, C.S., Snook, M.E., Liu, C.J., and Baerson, S.R. (2012). In planta production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and O-methyltransferase co-expression. Plant Biotechnol. J. 10, 269-283. https://doi.org/10.1111/j.1467-7652.2011.00657.x
- Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. (2nd ed). Vol. 1, 2, 3. (NY, USA: Cold Spring Harbor Laboratory Press).
- Schmidlin, L., Poutaraud, A., Claudel, P., Mestre, P., Prado, E., Santos-Rosa, M., Wiedemann-Merdinoglu, S., Karst, F., Merdinoglu, D., and Hugueney, P. (2008). A stress-inducible resveratrol O-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiol. 148, 1630-1639. https://doi.org/10.1104/pp.108.126003
- Sparvoli, F., Martin, C., Scienza, A., Gavazzi, G., and Tonelli, C. (1994). Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol. Biol. 24, 743-755. https://doi.org/10.1007/BF00029856
- Ulrich, S., Wolter, F., and Stein, J.M. (2005). Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in carcinogenesis. Mol. Nutr. Food. Res. 49, 452-461. https://doi.org/10.1002/mnfr.200400081
- Ververidis, F., Trantas, E., Douglas, C., Vollmer, G., Kretzschmar, G., and Panopoulos, N. (2007). Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part II: Reconstruction of multienzyme pathways in plants and microbes. Biotechnol. J. 2, 1235-1249. https://doi.org/10.1002/biot.200700184
- Walle, T., Hsieh, F., DeLegge, M.H., Oatis, J.E. Jr, and Walle, U.K. (2004). High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 32, 1377-1382. https://doi.org/10.1124/dmd.104.000885
- Wang, T.T., Schoene, N.W., Kim, Y.S., Mizuno, C.S., and Rimando, A.M. (2010). Differential effects of resveratrol and its naturally occurring methylether analogs on cell cycle and apoptosis in human androgen-responsive LNCaP cancer cells. Mol. Nutr. Food Res. 54, 335-344. https://doi.org/10.1002/mnfr.200900143
- Watts, K.T., Lee, P.C., and Schmidt-Dannert, C. (2006). Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnol. 6, 22. https://doi.org/10.1186/1472-6750-6-22
- Zhang, Y., Li, S.Z., Li, J., Pan, X., Cahoon, R.E., Jaworski, J.G., Wang, X., Jez, J.M., Chen, F., and Yu, O. (2006). Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and Mammalian cells. J. Am. Chem. Soc. 128, 13030-13031 https://doi.org/10.1021/ja0622094
피인용 문헌
- Engineering yeast for high-level production of stilbenoid antioxidants vol.6, pp.1, 2016, https://doi.org/10.1038/srep36827
- Pterostilbene Is a Potential Candidate for Control of Blackleg in Canola vol.11, pp.5, 2016, https://doi.org/10.1371/journal.pone.0156186
- Enhanced production of resveratrol derivatives in tobacco plants by improving the metabolic flux of intermediates in the phenylpropanoid pathway vol.92, pp.1-2, 2016, https://doi.org/10.1007/s11103-016-0497-0
- Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-01700-9
- Expression of Codon-Optimized Plant GlycosyltransferaseUGT72B14inEscherichia coliEnhances Salidroside Production vol.2016, 2016, https://doi.org/10.1155/2016/9845927
- De novobiosynthesis of resveratrol by site-specific integration of heterologous genes inEscherichia coli vol.363, pp.8, 2016, https://doi.org/10.1093/femsle/fnw061
- Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield vol.132, pp.2, 2018, https://doi.org/10.1007/s11240-017-1332-2
- Expanding the Chemical Palette of Industrial Microbes: Metabolic Engineering for Type III PKS-Derived Polyketides pp.18606768, 2018, https://doi.org/10.1002/biot.201700463
- Resveratrol and Related Stilbenoids, Nutraceutical/Dietary Complements with Health-Promoting Actions: Industrial Production, Safety, and the Search for Mode of Action vol.17, pp.4, 2018, https://doi.org/10.1111/1541-4337.12359
- An innovative biotransformation to produce resveratrol by Bacillus safensis vol.9, pp.27, 2015, https://doi.org/10.1039/c9ra01338e
- Biotechnological Advances in Resveratrol Production and its Chemical Diversity vol.24, pp.14, 2015, https://doi.org/10.3390/molecules24142571