참고문헌
- Abboud, H.E. (1997). Growth factors and diabetic nephrology: an overview. Kidney Int. Supplement 60, S3-6.
- Ago, T., Kuroda, J., Pain, J., Fu, C., Li, H., and Sadoshima, J. (2010). Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ. Res. 106, 1253-1264. https://doi.org/10.1161/CIRCRESAHA.109.213116
- Altenhofer, S., Kleikers, P.W., Radermacher, K.A., Scheurer, P., Rob Hermans, J.J., Schiffers, P., Ho, H., Wingler, K., and Schmidt, H.H. (2012). The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell. Mol. Life Sci. 69, 2327-2343. https://doi.org/10.1007/s00018-012-1010-9
- Aoyama, T., Paik, Y.H., Watanabe, S., Laleu, B., Gaggini, F., Fioraso-Cartier, L., Molango, S., Heitz, F., Merlot, C., Szyndralewiez, C., et al. (2012). Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 56, 2316-2327. https://doi.org/10.1002/hep.25938
- Asaba, K., Tojo, A., Onozato, M.L., Goto, A., Quinn, M.T., Fujita, T., and Wilcox, C.S. (2005). Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int. 67, 1890-1898. https://doi.org/10.1111/j.1523-1755.2005.00287.x
- Barnes, J.L., and Gorin, Y. (2011). Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney Int. 79, 944-956. https://doi.org/10.1038/ki.2010.516
- Baynes, J.W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes 40, 405-412. https://doi.org/10.2337/diab.40.4.405
- Bedard, K., and Krause, K.H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245-313. https://doi.org/10.1152/physrev.00044.2005
- Block, K., Eid, A., Griendling, K.K., Lee, D.Y., Wittrant, Y., and Gorin, Y. (2008). Nox4 NAD(P)H oxidase mediates Src-dependent tyrosine phosphorylation of PDK-1 in response to angiotensin II: role in mesangial cell hypertrophy and fibronectin expression. J. Biol. Chem. 283, 24061-24076. https://doi.org/10.1074/jbc.M803964200
- Block, K., Gorin, Y., and Abboud, H.E. (2009). Subcellular localization of Nox4 and regulation in diabetes. Proc. Natl. Acad. Sci. USA 106, 14385-14390. https://doi.org/10.1073/pnas.0906805106
- Block, K., Ricono, J.M., Lee, D.Y., Bhandari, B., Choudhury, G.G., Abboud, H.E., and Gorin, Y. (2006). Arachidonic acid-dependent activation of a p22(phox)-based NAD(P)H oxidase mediates angiotensin II-induced mesangial cell protein synthesis and fibronectin expression via Akt/PKB. Antioxid. Redox Signal. 8, 1497-1508. https://doi.org/10.1089/ars.2006.8.1497
- Bondi, C.D., Manickam, N., Lee, D.Y., Block, K., Gorin, Y., Abboud, H.E., and Barnes, J.L. (2010). NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts. J. Am. Soc. Nephrol. 21, 93-102. https://doi.org/10.1681/ASN.2009020146
- Brandes, R.P., and Schroder, K. (2008). Composition and functions of vascular nicotinamide adenine dinucleotide phosphate oxidases. Trends Cardiovasc. Med. 18, 15-19. https://doi.org/10.1016/j.tcm.2007.11.001
- Brandes, R.P., Weissmann, N., and Schroder, K. (2010). NADPH oxidases in cardiovascular disease. Free Radic. Bio. Med. 49, 687-706. https://doi.org/10.1016/j.freeradbiomed.2010.04.030
- Brown, D.I., and Griendling, K.K. (2009). Nox proteins in signal transduction. Free Radic. Bio. Med. 47, 1239-1253. https://doi.org/10.1016/j.freeradbiomed.2009.07.023
- Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54, 1615-1625. https://doi.org/10.2337/diabetes.54.6.1615
- Campbell, K.N., Raij, L., and Mundel, P. (2011). Role of angiotensin II in the development of nephropathy and podocytopathy of diabetes. Curr. Diabetes Rev. 7, 3-7. https://doi.org/10.2174/157339911794273973
- Carnesecchi, S., Deffert, C., Donati, Y., Basset, O., Hinz, B., Preynat-Seauve, O., Guichard, C., Arbiser, J.L., Banfi, B., Pache, J.C., et al. (2011). A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxid. Redox Signal. 15, 607-619. https://doi.org/10.1089/ars.2010.3829
- Chai, D., Wang, B., Shen, L., Pu, J., Zhang, X.K., and He, B. (2008). RXR agonists inhibit high-glucose-induced oxidative stress by repressing PKC activity in human endothelial cells. Free Radic. Bio. Med. 44, 1334-1347. https://doi.org/10.1016/j.freeradbiomed.2007.12.022
- Chen, J., Chen, J.K., and Harris, R.C. (2012). Angiotensin II induces epithelial-to-mesenchymal transition in renal epithelial cells through reactive oxygen species/Src/caveolin-mediated activation of an epidermal growth factor receptor-extracellular signal-regulated kinase signaling pathway. Mol. Cell. Biol. 32, 981-991. https://doi.org/10.1128/MCB.06410-11
- Clempus, R.E., Sorescu, D., Dikalova, A.E., Pounkova, L., Jo, P., Sorescu, G.P., Schmidt, H.H., Lassegue, B., and Griendling, K.K. (2007). Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler. Thromb. Vasc. Biol. 27, 42-48. https://doi.org/10.1161/01.ATV.0000251500.94478.18
- Coughlan, M.T., Thorburn, D.R., Penfold, S.A., Laskowski, A., Harcourt, B.E., Sourris, K.C., Tan, A.L., Fukami, K., Thallas-Bonke, V., Nawroth, P.P., et al. (2009). RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J. Am. Soc. Nephrol. 20, 742-752. https://doi.org/10.1681/ASN.2008050514
- Craven, P.A., Phillips, S.L., Melhem, M.F., Liachenko, J., and DeRubertis, F.R. (2001). Overexpression of manganese superoxide dismutase suppresses increases in collagen accumulation induced by culture of mesangial cells in high-media glucose. Metabolism 50, 1043-1048. https://doi.org/10.1053/meta.2001.25802
- Cucoranu, I., Clempus, R., Dikalova, A., Phelan, P.J., Ariyan, S., Dikalov, S., and Sorescu, D. (2005). NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ. Res. 97, 900-907. https://doi.org/10.1161/01.RES.0000187457.24338.3D
- Das, R., Xu, S., Quan, X., Nguyen, T.T., Kong, I.D., Chung, C.H., Lee, E.Y., Cha, S.K., and Park, K.S. (2014). Upregulation of mitochondrial Nox4 mediates TGF-beta-induced apoptosis in cultured mouse podocytes. Am. J. Physiol. Renal Physiol. 306, F155-167. https://doi.org/10.1152/ajprenal.00438.2013
- de Mochel, N.S., Seronello, S., Wang, S.H., Ito, C., Zheng, J.X., Liang, T.J., Lambeth, J.D., and Choi, J. (2010). Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection. Hepatology 52, 47-59. https://doi.org/10.1002/hep.23671
- Di Marco, E., Gray, S.P., Chew, P., Koulis, C., Ziegler, A., Szyndralewiez, C., Touyz, R.M., Schmidt, H.H., Cooper, M.E., Slattery, R., et al. (2014). Pharmacological inhibition of NOX reduces atherosclerotic lesions, vascular ROS and immune-inflammatory responses in diabetic Apoe(-/-) mice. Diabetologia 57, 633-642. https://doi.org/10.1007/s00125-013-3118-3
- Diaz, B., Shani, G., Pass, I., Anderson, D., Quintavalle, M., and Courtneidge, S.A. (2009). Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation. Sci. Signal. 2, ra53.
- Dikalov, S. (2011). Cross talk between mitochondria and NADPH oxidases. Free Radic. Biol. Med. 51, 1289-1301. https://doi.org/10.1016/j.freeradbiomed.2011.06.033
- Ding, G., Zhang, A., Huang, S., Pan, X., Zhen, G., Chen, R., and Yang, T. (2007). ANG II induces c-Jun NH2-terminal kinase activation and proliferation of human mesangial cells via redox-sensitive transactivation of the EGFR. Am. J. Physiol. Renal. Physiol. 293, F1889-1897. https://doi.org/10.1152/ajprenal.00112.2007
- Drummond, G.R., Selemidis, S., Griendling, K.K., and Sobey, C.G. (2011). Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat. Rev. 10, 453-471.
- Eid, A.A., Gorin, Y., Fagg, B.M., Maalouf, R., Barnes, J.L., Block, K., and Abboud, H.E. (2009). Mechanisms of podocyte injury in diabetes: role of cytochrome P450 and NADPH oxidases. Diabetes 58, 1201-1211. https://doi.org/10.2337/db08-1536
- Eid, A.A., Ford, B.M., Block, K., Kasinath, B.S., Gorin, Y., Ghosh-Choudhury, G., Barnes, J.L., and Abboud, H.E. (2010). AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J. Biol. Chem. 285, 37503-37512. https://doi.org/10.1074/jbc.M110.136796
- Eid, A.A., Ford, B.M., Bhandary, B., de Cassia Cavaglieri, R., Block, K., Barnes, J.L., Gorin, Y., Choudhury, G.G., and Abboud, H.E. (2013a). Mammalian target of rapamycin regulates Nox4-mediated podocyte depletion in diabetic renal injury. Diabetes 62, 2935-2947. https://doi.org/10.2337/db12-1504
- Eid, A.A., Lee, D.Y., Roman, L.J., Khazim, K., and Gorin, Y. (2013b). Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression. Mol. Cell. Biol. 33, 3439-3460. https://doi.org/10.1128/MCB.00217-13
- Etoh, T., Inoguchi, T., Kakimoto, M., Sonoda, N., Kobayashi, K., Kuroda, J., Sumimoto, H., and Nawata, H. (2003). Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibity by interventive insulin treatment. Diabetologia 46, 1428-1437. https://doi.org/10.1007/s00125-003-1205-6
- Forbes, J.M., Coughlan, M.T., and Cooper, M.E. (2008). Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57, 1446-1454. https://doi.org/10.2337/db08-0057
- Ford, B.M., Eid, A.A., Gooz, M., Barnes, J.L., Gorin, Y.C., and Abboud, H.E. (2013). ADAM17 mediates Nox4 expression and NADPH oxidase activity in the kidney cortex of OVE26 mice. Am. J. Physiol. Renal. Physiol. 305, F323-332. https://doi.org/10.1152/ajprenal.00522.2012
- Fu, Y., Zhang, Y., Wang, Z., Wang, L., Wei, X., Zhang, B., Wen, Z., Fang, H., Pang, Q., and Yi, F. (2010). Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. Am. J. Nephrol. 32, 581-589. https://doi.org/10.1159/000322105
- Fujii, M., Inoguchi, T., Maeda, Y., Sasaki, S., Sawada, F., Saito, R., Kobayashi, K., Sumimoto, H., and Takayanagi, R. (2007). Pitavastatin ameliorates albuminuria and renal mesangial expansion by downregulating NOX4 in db/db mice. Kidney Int. 72, 473-480. https://doi.org/10.1038/sj.ki.5002366
- Fujii, M., Inoguchi, T., Sasaki, S., Maeda, Y., Zheng, J., Kobayashi, K., and Takayanagi, R. (2010). Bilirubin and biliverdin protect rodents against diabetic nephropathy by downregulating NAD(P)H oxidase. Kidney Int. 78, 905-919. https://doi.org/10.1038/ki.2010.265
- Gaggini, F., Laleu, B., Orchard, M., Fioraso-Cartier, L., Cagnon, L., Houngninou-Molango, S., Gradia, A., Duboux, G., Merlot, C., Heitz, F., et al. (2011). Design, synthesis and biological activity of original pyrazolo-pyrido-diazepine, -pyrazine and -oxazine dione derivatives as novel dual Nox4/Nox1 inhibitors. Bioorg. Med. Chem. 19, 6989-6999. https://doi.org/10.1016/j.bmc.2011.10.016
- Geiszt, M. (2006). NADPH oxidases: new kids on the block. Cardiov. Res. 71, 289-299. https://doi.org/10.1016/j.cardiores.2006.05.004
- Geiszt, M., Kopp, J.B., Varnai, P., and Leto, T.L. (2000). Identification of renox, an NAD(P)H oxidase in kidney. Proc. Natl. Acad. Sci. USA 97, 8010-8014. https://doi.org/10.1073/pnas.130135897
- Giacco, F., and Brownlee, M. (2010). Oxidative stress and diabetic complications. Circ. Res. 107, 1058-1070. https://doi.org/10.1161/CIRCRESAHA.110.223545
- Gill, P.S. and Wilcox, C.S. (2006). NADPH oxidases in the kidney. Antioxid. Redox Signal. 8, 1597-1607. https://doi.org/10.1089/ars.2006.8.1597
- Gojo, A., Utsunomiya, K., Taniguchi, K., Yokota, T., Ishizawa, S., Kanazawa, Y., Kurata, H., and Tajima, N. (2007). The Rho-kinase inhibitor, fasudil, attenuates diabetic nephropathy in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 568, 242-247. https://doi.org/10.1016/j.ejphar.2007.04.011
- Gorin, Y., and Block, K. (2013a). Nox4 and diabetic nephropathy: With a friend like this, who needs enemies? Free Radic. Biol. Med. 61C, 130-142.
- Gorin, Y., and Block, K. (2013b). Nox as a target for diabetic complications. Clin. Sci (Lond) 125, 361-382. https://doi.org/10.1042/CS20130065
- Gorin, Y., Block, K., Hernandez, J., Bhandari, B., Wagner, B., Barnes, J.L., and Abboud, H.E. (2005). Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J. Biol. Chem. 280, 39616-39626. https://doi.org/10.1074/jbc.M502412200
- Gorin, Y., Ricono, J.M., Kim, N.H., Bhandari, B., Choudhury, G.G., and Abboud, H.E. (2003). Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. Am. J. Physiol. Renal Physiol. 285, F219-229. https://doi.org/10.1152/ajprenal.00414.2002
- Gorin, Y., Ricono, J.M., Wagner, B., Kim, N.H., Bhandari, B., Choudhury, G.G., and Abboud, H.E. (2004). Angiotensin II-induced ERK1/ERK2 activation and protein synthesis are redox-dependent in glomerular mesangial cells. Biochem. J. 381, 231-239. https://doi.org/10.1042/BJ20031614
- Gray, S.P., Di Marco, E., Okabe, J., Szyndralewiez, C., Heitz, F., Montezano, A.C., de Haan, J.B., Koulis, C., El-Osta, A., Andrews, K.L., et al. (2013). NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation 127, 1888-1902. https://doi.org/10.1161/CIRCULATIONAHA.112.132159
- Greiber, S., Munzel, T., Kastner, S., Muller, B., Schollmeyer, P., and Pavenstadt, H. (1998). NAD(P)H oxidase activity in cultured human podocytes: effects of adenosine triphosphate. Kidney Int. 53, 654-663. https://doi.org/10.1046/j.1523-1755.1998.00796.x
- Griendling, K.K., and FitzGerald, G.A. (2003). Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108, 1912-1916. https://doi.org/10.1161/01.CIR.0000093660.86242.BB
- Hannken, T., Schroeder, R., Stahl, R.A., and Wolf, G. (1998). Angiotensin II-mediated expression of p27Kip1 and induction of cellular hypertrophy in renal tubular cells depend on the generation of oxygen radicals. Kidney Int. 54, 1923-1933. https://doi.org/10.1046/j.1523-1755.1998.00212.x
- Hecker, L., Logsdon, N.J., Kurundkar, D., Kurundkar, A., Bernard, K., Hock, T., Meldrum, E., Sanders, Y.Y., and Thannickal, V.J. (2014). Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci. Trans. Med. 6, 231ra247.
- Hecker, L., Vittal, R., Jones, T., Jagirdar, R., Luckhardt, T.R., Horowitz, J.C., Pennathur, S., Martinez, F.J., and Thannickal, V.J. (2009). NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat. Med. 15, 1077-1081. https://doi.org/10.1038/nm.2005
- Hinokio, Y., Suzuki, S., Hirai, M., Chiba, M., Hirai, A., and Toyota, T. (1999). Oxidative DNA damage in diabetes mellitus: its association with diabetic complications. Diabetologia 42, 995-998. https://doi.org/10.1007/s001250051258
- Holterman, C.E., Thibodeau, J.F., Towaij, C., Gutsol, A., Montezano, A.C., Parks, R.J., Cooper, M.E., Touyz, R.M., and Kennedy, C.R. (2014). Nephropathy and elevated BP in mice with podocytespecific NADPH oxidase 5 expression. J. Am. Soc. Nephrol. 25, 784-797. https://doi.org/10.1681/ASN.2013040371
-
Hua, H., Munk, S., Goldberg, H., Fantus, I.G., and Whiteside, C.I. (2003). High glucose-suppressed endothelin-1
$Ca^{2+}$ signaling via NADPH oxidase and diacylglycerol-sensitive protein kinase C isozymes in mesangial cells. J. Biol. Chem. 278, 33951-33962. https://doi.org/10.1074/jbc.M302823200 - Hwang, I., Lee, J., Huh, J.Y., Park, J., Lee, H.B., Ho, Y.S., and Ha, H. (2012). Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction. Diabetes 61, 728-738. https://doi.org/10.2337/db11-0584
- Ito, N., Ruegg, U.T., Kudo, A., Miyagoe-Suzuki, Y., and Takeda, S. (2013). Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat. Med. 19, 101-106. https://doi.org/10.1038/nm.3019
- Jaquet, V., Scapozza, L., Clark, R.A., Krause, K.H., and Lambeth, J.D. (2009). Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid. Redox Signal. 11, 2535-2552. https://doi.org/10.1089/ars.2009.2585
- Jeong, S.I., Kim, S.J., Kwon, T.H., Yu, K.Y., and Kim, S.Y. (2012). Schizandrin prevents damage of murine mesangial cells via blocking NADPH oxidase-induced ROS signaling in high glucose. Food Chem. Toxicol. 50, 1045-1053. https://doi.org/10.1016/j.fct.2011.11.028
- Jha, J.C., Gray, S.P., Barit, D., Okabe, J., El-Osta, A., Namikoshi, T., Thallas-Bonke, V., Wingler, K., Szyndralewiez, C., Heitz, F., et al. (2014). Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J. Am. Soc. Nephrol. 25, 1237-1254. https://doi.org/10.1681/ASN.2013070810
- Jiang, J.X., Chen, X., Serizawa, N., Szyndralewiez, C., Page, P., Schroder, K., Brandes, R.P., Devaraj, S., and Torok, N.J. (2012). Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic. Biol. Med. 53, 289-296. https://doi.org/10.1016/j.freeradbiomed.2012.05.007
- Jones, S.A., Hancock, J.T., Jones, O.T., Neubauer, A., and Topley, N. (1995). The expression of NADPH oxidase components in human glomerular mesangial cells: detection of protein and mRNA for p47phox, p67phox, and p22phox. J. Am. Soc. Nephrol. 5, 1483-1491.
- Kanwar, Y.S., Sun, L., Xie, P., Liu, F.Y., and Chen, S. (2011). A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Ann. Rev. Pathol. 6, 395-423. https://doi.org/10.1146/annurev.pathol.4.110807.092150
- Kanwar, Y.S., Wada, J., Sun, L., Xie, P., Wallner, E.I., Chen, S., Chugh, S., and Danesh, F.R. (2008). Diabetic nephropathy: mechanisms of renal disease progression. Exp. Biol. Med. 233, 4-11. https://doi.org/10.3181/0705-MR-134
- Kashihara, N., Haruna, Y., Kondeti, V.K., and Kanwar, Y.S. (2010). Oxidative stress in diabetic nephropathy. Curr. Med. Chem. 17, 4256-4269. https://doi.org/10.2174/092986710793348581
- Khazim, K., Gorin, Y., Cavaglieri, R.C., Abboud, H.E., and Fanti, P. (2013). The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo. Am. J. Physiol. Renal Physiol. 305, F691-700. https://doi.org/10.1152/ajprenal.00028.2013
- Kim, J.A., Neupane, G.P., Lee, E.S., Jeong, B.S., Park, B.C., and Thapa, P. (2011). NADPH oxidase inhibitors: a patent review. Expert Opin. Ther. Pat. 21, 1147-1158. https://doi.org/10.1517/13543776.2011.584870
- Kim, S.M., Kim, Y.G., Jeong, K.H., Lee, S.H., Lee, T.W., Ihm, C.G., and Moon, J.Y. (2012). Angiotensin II-induced mitochondrial Nox4 is a major endogenous source of oxidative stress in kidney tubular cells. PLoS One 7, e39739. https://doi.org/10.1371/journal.pone.0039739
- Kiritoshi, S., Nishikawa, T., Sonoda, K., Kukidome, D., Senokuchi, T., Matsuo, T., Matsumura, T., Tokunaga, H., Brownlee, M., and Araki, E. (2003). Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes 52, 2570-2577. https://doi.org/10.2337/diabetes.52.10.2570
- Kitada, M., Koya, D., Sugimoto, T., Isono, M., Araki, S., Kashiwagi, A., and Haneda, M. (2003). Translocation of glomerular p47phox and p67phox by protein kinase C-beta activation is required for oxidative stress in diabetic nephropathy. Diabetes 52, 2603-2614. https://doi.org/10.2337/diabetes.52.10.2603
- Kitada, M., Kume, S., Imaizumi, N., and Koya, D. (2011). Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes 60, 634-643. https://doi.org/10.2337/db10-0386
- Koya, D., Hayashi, K., Kitada, M., Kashiwagi, A., Kikkawa, R., and Haneda, M. (2003). Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats. J. Am. Soc. Nephrol. 14, S250-253. https://doi.org/10.1097/01.ASN.0000077412.07578.44
- Koziel, R., Pircher, H., Kratochwil, M., Lener, B., Hermann, M., Dencher, N.A., and Jansen-Durr, P. (2013). Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox4. Biochem. J. 452, 231-239. https://doi.org/10.1042/BJ20121778
- Kuroda, J., Nakagawa, K., Yamasaki, T., Nakamura, K., Takeya, R., Kuribayashi, F., Imajoh-Ohmi, S., Igarashi, K., Shibata, Y., Sueishi, K., et al. (2005). The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells. Genes Cells 10, 1139-1151. https://doi.org/10.1111/j.1365-2443.2005.00907.x
- Kuroda, J., Ago, T., Matsushima, S., Zhai, P., Schneider, M.D., and Sadoshima, J. (2010). NADPH oxidase 4 (Nox4). is a major source of oxidative stress in the failing heart. Proc. Natl. Acad. Sci. USA 107, 15565-15570. https://doi.org/10.1073/pnas.1002178107
- Kwan, J., Wang, H., Munk, S., Xia, L., Goldberg, H.J., and Whiteside, C.I. (2005). In high glucose protein kinase C-zeta activation is required for mesangial cell generation of reactive oxygen species. Kidney Int. 68, 2526-2541. https://doi.org/10.1111/j.1523-1755.2005.00660.x
- Laleu, B., Gaggini, F., Orchard, M., Fioraso-Cartier, L., Cagnon, L., Houngninou-Molango, S., Gradia, A., Duboux, G., Merlot, C., Heitz, F., et al. (2010). First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4). inhibitors for the treatment of idiopathic pulmonary fibrosis. J. Med. Chem. 53, 7715-7730. https://doi.org/10.1021/jm100773e
- Lambeth, J.D. (2007). Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic. Biol. Med. 43, 332-347. https://doi.org/10.1016/j.freeradbiomed.2007.03.027
- Lambeth, J.D., Kawahara, T., and Diebold, B. (2007). Regulation of Nox and Duox enzymatic activity and expression. Free Radic. Biol. Med. 43, 319-331. https://doi.org/10.1016/j.freeradbiomed.2007.03.028
- Lambeth, J.D., Krause, K.H., and Clark, R.A. (2008). NOX enzymes as novel targets for drug development. Semin. Immunopathol. 30, 339-363. https://doi.org/10.1007/s00281-008-0123-6
- Lassegue, B., and Clempus, R.E. (2003). Vascular NAD(P).H oxidases: specific features, expression, and regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R277-297. https://doi.org/10.1152/ajpregu.00758.2002
- Lassegue, B., and Griendling, K.K. (2010). NADPH oxidases: functions and pathologies in the vasculature. Arterioscler. Thromb. Vasc. Biol. 30, 653-661. https://doi.org/10.1161/ATVBAHA.108.181610
- Lassegue, B., Sorescu, D., Szocs, K., Yin, Q., Akers, M., Zhang, Y., Grant, S.L., Lambeth, J.D., and Griendling, K.K. (2001). Novel gp91(phox). homologues in vascular smooth muscle cells : nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ. Res. 88, 888-894. https://doi.org/10.1161/hh0901.090299
- Lassegue, B., San Martin, A. and Griendling, K.K. (2012). Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 110, 1364-1390. https://doi.org/10.1161/CIRCRESAHA.111.243972
- Lavrentyev, E.N., and Malik, K.U. (2009). High glucose-induced Nox1-derived superoxides downregulate PKC-betaII, which subsequently decreases ACE2 expression and ANG(1-7). formation in rat VSMCs. Am. J. Physiol. Heart Circ. Physiol. 296, H106-118. https://doi.org/10.1152/ajpheart.00239.2008
- Lee, H.B., Yu, M.R., Yang, Y., Jiang, Z. and Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J. Am. Soc. Nephrol. 14, S241-245. https://doi.org/10.1097/01.ASN.0000077410.66390.0F
- Lee, D.Y., Wauquier, F., Eid, A.A., Roman, L.J., Ghosh-Choudhury, G., Khazim, K., Block, K., and Gorin, Y. (2013a). Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: role of mitochondrial reactive oxygen species. J. Biol. Chem. 288, 28668-28686. https://doi.org/10.1074/jbc.M113.470971
- Lee, J.H., Kim, J.H., Kim, J.S., Chang, J.W., Kim, S.B., Park, J.S. and Lee, S.K. (2013b). AMP-activated protein kinase inhibits TGF-beta-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal transition. Am. J. Physiol. Renal Physiol. 304, F686-697. https://doi.org/10.1152/ajprenal.00148.2012
- Liu, G.C., Fang, F., Zhou, J., Koulajian, K., Yang, S., Lam, L., Reich, H.N., John, R., Herzenberg, A.M., Giacca, A., et al. (2012). Deletion of p47phox attenuates the progression of diabetic nephropathy and reduces the severity of diabetes in the Akita mouse. Diabetologia 55, 2522-2532. https://doi.org/10.1007/s00125-012-2586-1
- Liu, R.M., Choi, J., Wu, J.H., Gaston Pravia, K.A., Lewis, K.M., Brand, J.D., Mochel, N.S., Krzywanski, D.M., Lambeth, J.D., Hagood, J.S., et al. (2010). Oxidative modification of nuclear mitogen-activated protein kinase phosphatase 1 is involved in transforming growth factor beta1-induced expression of plasminogen activator inhibitor 1 in fibroblasts. J. Biol. Chem. 285, 16239-16247. https://doi.org/10.1074/jbc.M110.111732
- Lyle, A.N., Deshpande, N.N., Taniyama, Y., Seidel-Rogol, B., Pounkova, L., Du, P., Papaharalambus, C., Lassegue, B. and Griendling, K.K. (2009). Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ. Res. 105, 249-259. https://doi.org/10.1161/CIRCRESAHA.109.193722
- Maalouf, R.M., Eid, A.A., Gorin, Y.C., Block, K., Escobar, G.P., Bailey, S., and Abboud, H.E. (2012). Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. Am. J. Physiol. Cell Physiol. 302, C597-604. https://doi.org/10.1152/ajpcell.00331.2011
- Maeda, Y., Inoguchi, T., Takei, R., Sawada, F., Sasaki, S., Fujii, M., Kobayashi, K., Urata, H., Nishiyama, A., and Takayanagi, R. (2010). Inhibition of chymase protects against diabetes-induced oxidative stress and renal dysfunction in hamsters. Am. J. Physiol. Renal Physiol. 299, F1328-1338. https://doi.org/10.1152/ajprenal.00337.2010
- Mahadev, K., Motoshima, H., Wu, X., Ruddy, J.M., Arnold, R.S., Cheng, G., Lambeth, J.D., and Goldstein, B.J. (2004). The NAD(P).H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol. Cell. Biol. 24, 1844-1854. https://doi.org/10.1128/MCB.24.5.1844-1854.2004
- Manickam, N., Patel, M., Griendling, K.K., Gorin, Y., and Barnes, J.L. (2014). RhoA/Rho kinase mediates TGF-beta1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. Am. J. Physiol. Renal Physiol. 307, F159-171. https://doi.org/10.1152/ajprenal.00546.2013
- McCarty, M.F., Barroso-Aranda, J., and Contreras, F. (2009). AMP-activated kinase may suppress NADPH oxidase activation in vascular tissues. Med. Hypotheses 72, 468-470. https://doi.org/10.1016/j.mehy.2008.12.024
- Meng, D., Lv, D.D., and Fang, J. (2008). Insulin-like growth factor-I induces reactive oxygen species production and cell migration through Nox4 and Rac1 in vascular smooth muscle cells. Cardiov. Res. 80, 299-308. https://doi.org/10.1093/cvr/cvn173
- Menini, S., Iacobini, C., Ricci, C., Oddi, G., Pesce, C., Pugliese, F., Block, K., Abboud, H.E., Giorgio, M., Migliaccio, E., et al. (2007). Ablation of the gene encoding p66Shc protects mice against AGE-induced glomerulopathy by preventing oxidant-dependent tissue injury and further AGE accumulation. Diabetologia 50, 1997-2007. https://doi.org/10.1007/s00125-007-0728-7
- Mittal, M., Roth, M., Konig, P., Hofmann, S., Dony, E., Goyal, P., Selbitz, A.C., Schermuly, R.T., Ghofrani, H.A., Kwapiszewska, G., et al. (2007). Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ. Res. 101, 258-267. https://doi.org/10.1161/CIRCRESAHA.107.148015
- Miyata, K., Rahman, M., Shokoji, T., Nagai, Y., Zhang, G.X., Sun, G.P., Kimura, S., Yukimura, T., Kiyomoto, H., Kohno, M., et al. (2005). Aldosterone stimulates reactive oxygen species production through activation of NADPH oxidase in rat mesangial cells. J. Am. Soc. Nephrol. 16, 2906-2912. https://doi.org/10.1681/ASN.2005040390
- Moe, K.T., Aulia, S., Jiang, F., Chua, Y.L., Koh, T.H., Wong, M.C. and Dusting, G.J. (2006). Differential upregulation of Nox homologues of NADPH oxidase by tumor necrosis factor-alpha in human aortic smooth muscle and embryonic kidney cells. J. Cell. Mol. Med. 10, 231-239. https://doi.org/10.1111/j.1582-4934.2006.tb00304.x
- New, D.D., Block, K., Bhandhari, B., Gorin, Y., and Abboud, H.E. (2012). IGF-I increases the expression of fibronectin by Nox4-dependent Akt phosphorylation in renal tubular epithelial cells. Am. J. Physiol. Renal Physiol. 302, C122-130. https://doi.org/10.1152/ajpcell.00141.2011
- Nishikawa, T., Edelstein, D., Du, X.L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M.A., Beebe, D., Oates, P.J., Hammes, H.P., et al. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787-790. https://doi.org/10.1038/35008121
- Nistala, R., Whaley-Connell, A., and Sowers, J.R. (2008). Redox control of renal function and hypertension. Antioxid. Redox Signal. 10, 2047-2089. https://doi.org/10.1089/ars.2008.2034
- Octavia, Y., Brunner-La Rocca, H.P., and Moens, A.L. (2012). NADPH oxidase-dependent oxidative stress in the failing heart: From pathogenic roles to therapeutic approach. Free Radic. Biol. Med. 52, 291-297. https://doi.org/10.1016/j.freeradbiomed.2011.10.482
- Ohshiro, Y., Ma, R.C., Yasuda, Y., Hiraoka-Yamamoto, J., Clermont, A.C., Isshiki, K., Yagi, K., Arikawa, E., Kern, T.S., and King, G.L. (2006). Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice. Diabetes 55, 3112-3120. https://doi.org/10.2337/db06-0895
- Papadimitriou, A., Peixoto, E.B., Silva, K.C., Lopes de Faria, J.M., and Lopes de Faria, J.B. (2014). Increase in AMPK brought about by cocoa is renoprotective in experimental diabetes mellitus by reducing NOX4/TGFbeta-1 signaling. J. Nutr. Biochem. 25, 773-784. https://doi.org/10.1016/j.jnutbio.2014.03.010
- Paravicini, T.M., and Touyz, R.M. (2008). NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 31 Suppl 2, S170-180. https://doi.org/10.2337/dc08-s247
- Pedruzzi, E., Guichard, C., Ollivier, V., Driss, F., Fay, M., Prunet, C., Marie, J.C., Pouzet, C., Samadi, M., Elbim, C., et al. (2004). NAD(P).H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol. Cell. Biol. 24, 10703-10717. https://doi.org/10.1128/MCB.24.24.10703-10717.2004
- Peng, Z.Z., Hu, G.Y., Shen, H., Wang, L., Ning, W.B., Xie, Y.Y., Wang, N.S., Li, B.X., Tang, Y.T., and Tao, L.J. (2009). Fluorofenidone attenuates collagen I and transforming growth factor-beta1 expression through a nicotinamide adenine dinucleotide phosphate oxidase-dependent way in NRK-52E cells. Nephrology 14, 565-572. https://doi.org/10.1111/j.1440-1797.2009.01129.x
- Peshavariya, H., Jiang, F., Taylor, C.J., Selemidis, S., Chang, C.W., and Dusting, G.J. (2009). Translation-linked mRNA destabilization accompanying serum-induced Nox4 expression in human endothelial cells. Antioxid. Redox Signal. 11, 2399-2408. https://doi.org/10.1089/ars.2009.2579
- Peshavariya, H.M., Dusting, G.J. and Selemidis, S. (2007). Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radic. Res. 41, 699-712. https://doi.org/10.1080/10715760701297354
- Piwkowska, A., Rogacka, D., Audzeyenka, I., Jankowski, M., and Angielski, S. (2011). High glucose concentration affects the oxidant-antioxidant balance in cultured mouse podocytes. J. Cell. Biochem. 112, 1661-1672. https://doi.org/10.1002/jcb.23088
- Piwkowska, A., Rogacka, D., Jankowski, M., Dominiczak, M.H., Stepinski, J.K. and Angielski, S. (2010). Metformin induces suppression of NAD(P).H oxidase activity in podocytes. Biochem. Biophys. Res. Commun. 393, 268-273. https://doi.org/10.1016/j.bbrc.2010.01.119
- Pleskova, M., Beck, K.F., Behrens, M.H., Huwiler, A., Fichtlscherer, B., Wingerter, O., Brandes, R.P., Mulsch, A. and Pfeilschifter, J. (2006). Nitric oxide down-regulates the expression of the catalytic NADPH oxidase subunit Nox1 in rat renal mesangial cells. FASEB J. 20, 139-141. https://doi.org/10.1096/fj.05-3791fje
- Rhyu, D.Y., Yang, Y., Ha, H., Lee, G.T., Song, J.S., Uh, S.T. and Lee, H.B. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J. Am. Soc. Nephrol. 16, 667-675. https://doi.org/10.1681/ASN.2004050425
- Rincon-Choles, H., Kasinath, B.S., Gorin, Y. and Abboud, H.E. (2002). Angiotensin II and growth factors in the pathogenesis of diabetic nephropathy. Kidney Int. Supplement S8-11.
- Rivera, J., Sobey, C.G., Walduck, A.K. and Drummond, G.R. (2010). Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models. Redox Rep. 15, 50-63. https://doi.org/10.1179/174329210X12650506623401
- Schnackenberg, C.G. (2002). Oxygen radicals in cardiovascular-renal disease. Curr. Opin. Pharmacol. 2, 121-125. https://doi.org/10.1016/S1471-4892(02)00133-9
- Schuhmacher, S., Foretz, M., Knorr, M., Jansen, T., Hortmann, M., Wenzel, P., Oelze, M., Kleschyov, A.L., Daiber, A., Keaney, J.F., Jr., et al. (2011). alpha1AMP-activated protein kinase preserves endothelial function during chronic angiotensin II treatment by limiting Nox2 upregulation. Arterioscler. Thromb. Vasc. Biol. 31, 560-566. https://doi.org/10.1161/ATVBAHA.110.219543
- Sedeek, M., Callera, G., Montezano, A., Gutsol, A., Heitz, F., Szyndralewiez, C., Page, P., Kennedy, C.R., Burns, K.D., Touyz, R.M., et al. (2010). Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol. 299, F1348-1358. https://doi.org/10.1152/ajprenal.00028.2010
- Sedeek, M., Gutsol, A., Montezano, A.C., Burger, D., Nguyen Dinh Cat, A., Kennedy, C.R., Burns, K.D., Cooper, M.E., Jandeleit-Dahm, K., Page, P., et al. (2013). Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of Type 2 diabetes. Clin. Sci. 124, 191-202. https://doi.org/10.1042/CS20120330
- Sedeek, M., Hebert, R.L., Kennedy, C.R., Burns, K.D. and Touyz, R.M. (2009). Molecular mechanisms of hypertension: role of Nox family NADPH oxidases. Curr. Opin. Nephrol. Hypertens. 18, 122-127. https://doi.org/10.1097/MNH.0b013e32832923c3
- Sedeek, M., Montezano, A.C., Hebert, R.L., Gray, S.P., Di Marco, E., Jha, J.C., Cooper, M.E., Jandeleit-Dahm, K., Schiffrin, E.L., Wilkinson-Berka, J.L., et al. (2012). Oxidative stress, Nox isoforms and complications of diabetes--potential targets for novel therapies. J. Cardiovasc. Transl. Res. 5, 509-518. https://doi.org/10.1007/s12265-012-9387-2
- Selemidis, S., Sobey, C.G., Wingler, K., Schmidt, H.H., and Drummond, G.R. (2008). NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacol. Ther. 120, 254-291. https://doi.org/10.1016/j.pharmthera.2008.08.005
- Serrander, L., Cartier, L., Bedard, K., Banfi, B., Lardy, B., Plastre, O., Sienkiewicz, A., Forro, L., Schlegel, W., and Krause, K.H. (2007). NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem. J. 406, 105-114. https://doi.org/10.1042/BJ20061903
- Shah, A., Xia, L., Goldberg, H., Lee, K.W., Quaggin, S.E., and Fantus, I.G. (2013). Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells. J. Biol. Chem. 288, 6835-6848. https://doi.org/10.1074/jbc.M112.419101
- Sharma, K., Ramachandrarao, S., Qiu, G., Usui, H.K., Zhu, Y., Dunn, S.R., Ouedraogo, R., Hough, K., McCue, P., Chan, L., et al. (2008). Adiponectin regulates albuminuria and podocyte function in mice. J. Clin. Invest. 118, 1645-1656.
- Shiose, A., Kuroda, J., Tsuruya, K., Hirai, M., Hirakata, H., Naito, S., Hattori, M., Sakaki, Y., and Sumimoto, H. (2001). A novel superoxide-producing NAD(P).H oxidase in kidney. J. Biolo. Chem. 276, 1417-1423. https://doi.org/10.1074/jbc.M007597200
- Singh, D.K., Winocour, P., and Farrington, K. (2011). Oxidative stress in early diabetic nephropathy: fueling the fire. Nat. Rev. 7, 176-184.
- Siu, K.L., Lotz, C., Ping, P., and Cai, H. (2015). Netrin-1 abrogates ischemia/reperfusion-induced cardiac mitochondrial dysfunction via nitric oxide-dependent attenuation of NOX4 activation and recoupling of NOS. J. Mol. Cell Cardiol. 78, 174-185. https://doi.org/10.1016/j.yjmcc.2014.07.005
- Son, S.M., Whalin, M.K., Harrison, D.G., Taylor, W.R., and Griendling, K.K. (2004). Oxidative stress and diabetic vascular complications. Curr. Diabetes Rep. 4, 247-252. https://doi.org/10.1007/s11892-004-0075-8
- Sonta, T., Inoguchi, T., Matsumoto, S., Yasukawa, K., Inuo, M., Tsubouchi, H., Sonoda, N., Kobayashi, K., Utsumi, H., and Nawata, H. (2005). In vivo imaging of oxidative stress in the kidney of diabetic mice and its normalization by angiotensin II type 1 receptor blocker. Biochem. Biophys. Res. Commun. 330, 415-422. https://doi.org/10.1016/j.bbrc.2005.02.174
- Stanton, R.C. (2011). Oxidative stress and diabetic kidney disease. Curr. Diabetes Rep. 11, 330-336. https://doi.org/10.1007/s11892-011-0196-9
- Sturrock, A., Cahill, B., Norman, K., Huecksteadt, T.P., Hill, K., Sanders, K., Karwande, S.V., Stringham, J.C., Bull, D.A., Gleich, M., et al. (2006). Transforming growth factor-beta1 induces Nox4 NAD(P).H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L661-L673. https://doi.org/10.1152/ajplung.00269.2005
- Takac, I., Schroder, K., Zhang, L., Lardy, B., Anilkumar, N., Lambeth, J.D., Shah, A.M., Morel, F. and Brandes, R.P. (2011). The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J. Biol. Chem. 286, 13304-13313. https://doi.org/10.1074/jbc.M110.192138
- Takao, T., Horino, T., Kagawa, T., Matsumoto, R., Shimamura, Y., Ogata, K., Inoue, K., Taniguchi, Y., Taguchi, T., Morita, T., et al. (2011). Possible involvement of intracellular angiotensin II receptor in high-glucose-induced damage in renal proximal tubular cells. J. Nephrol. 24, 218-224. https://doi.org/10.5301/JN.2010.5785
- Thallas-Bonke, V., Thorpe, S.R., Coughlan, M.T., Fukami, K., Yap, F.Y., Sourris, K.C., Penfold, S.A., Bach, L.A., Cooper, M.E. and Forbes, J.M. (2008). Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes 57, 460-469. https://doi.org/10.2337/db07-1119
- Thallas-Bonke, V., Jha, J.C., Gray, S.P., Barit, D., Haller, H., Schmidt, H.H., Coughlan, M.T., Cooper, M.E., Forbes, J.M. and Jandeleit-Dahm, K.A. (2014). Nox-4 deletion reduces oxidative stress and injury by PKC-alpha-associated mechanisms in diabetic nephropathy. Physiol. Rep. 2 pii: e1219.
- Ushio-Fukai, M. (2006). Localizing NADPH oxidase-derived ROS. Sci. STKE 2006, re8.
- Varga, Z.V., Kupai, K., Szucs, G., Gaspar, R., Paloczi, J., Farago, N., Zvara, A., Puskas, L.G., Razga, Z., Tiszlavicz, L., et al. (2013). MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart. J. Mol. Cell. Cardiol. 62, 111-121. https://doi.org/10.1016/j.yjmcc.2013.05.009
- Vasavada, N., and Agarwal, R. (2005). Role of oxidative stress in diabetic nephropathy. Adv. Chronic. Kidney Dis. 12, 146-154. https://doi.org/10.1053/j.ackd.2005.01.001
- Vendrov, A.E., Madamanchi, N.R., Niu, X.L., Molnar, K.C., Runge, M., Szyndralewiez, C., Page, P., and Runge, M.S. (2010). NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis. J. Biol. Chem. 285, 26545-26557. https://doi.org/10.1074/jbc.M110.143917
- Wang, S., Zhang, M., Liang, B., Xu, J., Xie, Z., Liu, C., Viollet, B., Yan, D., and Zou, M.H. (2010). AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes. Circ. Res. 106, 1117-1128. https://doi.org/10.1161/CIRCRESAHA.109.212530
- Wei, X.F., Zhou, Q.G., Hou, F.F., Liu, B.Y., and Liang, M. (2009). Advanced oxidation protein products induce mesangial cell perturbation through PKC-dependent activation of NADPH oxidase. Am. J. Physiol. Renal Physiol. 296, F427-437. https://doi.org/10.1152/ajprenal.90536.2008
- Whaley-Connell, A., Habibi, J., Nistala, R., Cooper, S.A., Karuparthi, P.R., Hayden, M.R., Rehmer, N., DeMarco, V.G., Andresen, B.T., Wei, Y., et al. (2008). Attenuation of NADPH oxidase activation and glomerular filtration barrier remodeling with statin treatment. Hypertension 51, 474-480. https://doi.org/10.1161/HYPERTENSIONAHA.107.102467
- Whiteside, C., Wang, H., Xia, L., Munk, S., Goldberg, H.J., and Fantus, I.G. (2009). Rosiglitazone prevents high glucose-induced vascular endothelial growth factor and collagen IV expression in cultured mesangial cells. Exp. Diabetes Res. 2009, 910783.
- Wilkinson-Berka, J.L., Deliyanti, D., Rana, I., Miller, A.G., Agrotis, A., Armani, R., Szyndralewiez, C., Wingler, K., Touyz, R.M., Cooper, M.E., et al. (2014). NADPH oxidase, NOX1, mediates vascular injury in ischemic retinopathy. Antioxid. Redox Signal. 20, 2726-2740. https://doi.org/10.1089/ars.2013.5357
- Williams, C.R. and Gooch, J.L. (2014). Calcineurin Abeta regulates NADPH oxidase (Nox). expression and activity via nuclear factor of activated T cells (NFAT) in response to high glucose. J. Biol. Chem. 289, 4896-4905. https://doi.org/10.1074/jbc.M113.514869
- Wingler, K., Wunsch, S., Kreutz, R., Rothermund, L., Paul, M., and Schmidt, H.H. (2001). Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo. Free Radic. Biol. Med. 31, 1456-1464. https://doi.org/10.1016/S0891-5849(01)00727-4
- Wu, R.F., Ma, Z., Myers, D.P., and Terada, L.S. (2007). HIV-1 Tat activates dual Nox pathways leading to independent activation of ERK and JNK MAP kinases. J. Biol. Chem. 282, 37412-37419. https://doi.org/10.1074/jbc.M704481200
- Xia, L., Wang, H., Goldberg, H.J., Munk, S., Fantus, I.G., and Whiteside, C.I. (2006). Mesangial cell NADPH oxidase upregulation in high glucose is protein kinase C dependent and required for collagen IV expression. Am. J. Physiol. Renal Physiol. 290, F345-356. https://doi.org/10.1152/ajprenal.00119.2005
- Xia, L., Wang, H., Munk, S., Kwan, J., Goldberg, H.J., Fantus, I.G., and Whiteside, C.I. (2008). High glucose activates PKC-zeta and NADPH oxidase through autocrine TGF-beta1 signaling in mesangial cells. Am. J. Physiol. Renal Physiol. 295, F1705-1714. https://doi.org/10.1152/ajprenal.00043.2008
- Xu, Y., Ruan, S., Xie, H., and Lin, J. (2010). Role of LOX-1 in Ang II-induced oxidative functional damage in renal tubular epithelial cells. Int. J. Mol. Med. 26, 679-690.
- Yamagishi, S., Nakamura, K., Ueda, S., Kato, S., and Imaizumi, T. (2005). Pigment epithelium-derived factor (PEDF) blocks angiotensin II signaling in endothelial cells via suppression of NADPH oxidase: a novel anti-oxidative mechanism of PEDF. Cell Tissue Res. 320, 437-445. https://doi.org/10.1007/s00441-005-1094-8
- You, Y.H., Okada, S., Ly, S., Jandeleit-Dahm, K., Barit, D., Namikoshi, T. and Sharma, K. (2013). Role of Nox2 in diabetic kidney disease. Am. J. Physiol. Renal Physiol. 304, F840-848. https://doi.org/10.1152/ajprenal.00511.2012
- Yu, L., Liu, Y., Wu, Y., Liu, Q., Feng, J., Gu, X., Xiong, Y., Fan, Q., and Ye, J. (2014a). Smad3/Nox4-mediated mitochondrial dysfunction plays a crucial role in puromycin aminonucleoside-induced podocyte damage. Cell. Signal. 26, 2979-2991. https://doi.org/10.1016/j.cellsig.2014.08.030
- Yu, P., Han, W., Villar, V.A., Yang, Y., Lu, Q., Lee, H., Li, F., Quinn, M.T., Gildea, J.J., Felder, R.A., et al. (2014b). Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells. Redox Biol. 2, 570-579. https://doi.org/10.1016/j.redox.2014.01.020
- Zhang, H., Jiang, Z., Chang, J., Li, X., Zhu, H., Lan, H.Y., Zhou, S.F., and Yu, X. (2009). Role of NAD(P).H oxidase in transforming growth factor-beta1-induced monocyte chemoattractant protein-1 and interleukin-6 expression in rat renal tubular epithelial cells. Nephrology 14, 302-310. https://doi.org/10.1111/j.1440-1797.2008.01072.x
- Zhang, L., Pang, S., Deng, B., Qian, L., Chen, J., Zou, J., Zheng, J., Yang, L., Zhang, C., Chen, X., et al. (2012). High glucose induces renal mesangial cell proliferation and fibronectin expression through JNK/NF-kappaB/NADPH oxidase/ROS pathway, which is inhibited by resveratrol. Int. J. Biochem. Cell Biol. 44, 629-638. https://doi.org/10.1016/j.biocel.2012.01.001
- Ziyadeh, F.N., and Wolf, G. (2008) Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr. Diabetes Rev. 4, 39-45. https://doi.org/10.2174/157339908783502370
피인용 문헌
- Role of NADPH Oxidase in Metabolic Disease-Related Renal Injury: An Update vol.2016, 2016, https://doi.org/10.1155/2016/7813072
- Corosolic acid inhibits the proliferation of glomerular mesangial cells and protects against diabetic renal damage vol.6, pp.1, 2016, https://doi.org/10.1038/srep26854
- The protective effects of oral low-dose quercetin on diabetic nephropathy in hypercholesterolemic mice vol.6, 2015, https://doi.org/10.3389/fphys.2015.00247
- Epigallocatechin-3-gallate Attenuates Renal Damage by Suppressing Oxidative Stress in Diabetic db/db Mice vol.2016, 2016, https://doi.org/10.1155/2016/2968462
- Comprehensive renoprotective effects of ipragliflozin on early diabetic nephropathy in mice vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-22229-5
- Molecular basis of the counteraction by calcium channel blockers of cyclosporine nephrotoxicity vol.315, pp.3, 2018, https://doi.org/10.1152/ajprenal.00275.2017
- Early Growth Response 1 (Egr1) Is a Transcriptional Activator of NOX4 in Oxidative Stress of Diabetic Kidney Disease vol.2018, pp.2314-6753, 2018, https://doi.org/10.1155/2018/3405695
- An Atherogenic Paigen-Diet Aggravates Nephropathy in Type 2 Diabetic OLETF Rats vol.10, pp.11, 2015, https://doi.org/10.1371/journal.pone.0143979
- Pathophysiology of gadolinium-associated systemic fibrosis vol.311, pp.1, 2016, https://doi.org/10.1152/ajprenal.00166.2016
- The role of the Nox4-derived ROS-mediated RhoA/Rho kinase pathway in rat hypertension induced by chronic intermittent hypoxia vol.21, pp.3, 2015, https://doi.org/10.1007/s11325-016-1449-2
- Curcumin attenuates oxidative stress in liver in Type 1 diabetic rats vol.12, pp.1, 2015, https://doi.org/10.1515/biol-2017-0053
- Atorvastatin alleviates iodinated contrast media-induced cytotoxicity in human proximal renal tubular epithelial cells vol.14, pp.4, 2015, https://doi.org/10.3892/etm.2017.4859
- Cardiac and renal upregulation of Nox2 and NF ‐ κ B and repression of Nox4 and Nrf2 in season‐ and diabetes‐mediated models of vascular oxidative stress in guinea‐pi vol.5, pp.20, 2017, https://doi.org/10.14814/phy2.13474
- Proteomic and bioinformatic discovery of biomarkers for diabetic nephropathy vol.17, pp.None, 2015, https://doi.org/10.17179/excli2018-1150
- Oxidative stress caused by activation of NADPH oxidase 4 promotes contrast-induced acute kidney injury vol.13, pp.1, 2015, https://doi.org/10.1371/journal.pone.0191034
- TGF-β-mediated NADPH oxidase 4-dependent oxidative stress promotes colistin-induced acute kidney injury vol.73, pp.4, 2018, https://doi.org/10.1093/jac/dkx479
- A NOX4/TRPC6 Pathway in Podocyte Calcium Regulation and Renal Damage in Diabetic Kidney Disease vol.29, pp.7, 2015, https://doi.org/10.1681/asn.2018030280
- Recent advances in the pathogenesis of microvascular complications in diabetes vol.42, pp.3, 2015, https://doi.org/10.1007/s12272-019-01130-3
- The PKCβ-p66shc-NADPH oxidase pathway plays a crucial role in diabetic nephropathy vol.71, pp.3, 2015, https://doi.org/10.1111/jphp.13043
- Wnt/β-catenin links oxidative stress to podocyte injury and proteinuria vol.95, pp.4, 2015, https://doi.org/10.1016/j.kint.2018.10.032
- NADPH oxidase 4 mediates TGF-β1/Smad signaling pathway induced acute kidney injury in hypoxia vol.14, pp.7, 2015, https://doi.org/10.1371/journal.pone.0219483
- NADPH oxidase 4 mediates TGF-β1/Smad signaling pathway induced acute kidney injury in hypoxia vol.14, pp.7, 2015, https://doi.org/10.1371/journal.pone.0219483
- Interplay between RNA-binding protein HuR and Nox4 as a novel therapeutic target in diabetic kidney disease vol.36, pp.None, 2015, https://doi.org/10.1016/j.molmet.2020.02.011
- Molecular Mechanisms of Apoptosis of Glomerular Podocytes in Diabetic Nephropathy vol.14, pp.3, 2015, https://doi.org/10.1134/s1990747820030058
- Salvianolate ameliorates oxidative stress and podocyte injury through modulation of NOX4 activity in db/db mice vol.25, pp.2, 2021, https://doi.org/10.1111/jcmm.16165