막 증발법(Membrane Distillation)을 이용한 고농도 하·폐수처리 가능성 연구

Feasibility study on the application of membrane distillation process to treat high strength wastewater

김세운¹·이동우²·민경진²·조진우^{1*} Kim, Se-Woon¹·Lee, Dong-Woo²·Min- Kyung Jin²·Cho, Jinwoo^{1*}

¹세종대학교 환경에너지융합학과, ²(주)EPS 솔루션 ¹Department of Environment & Energy, Sejong University, ²EPS Solution Inc.

ABSTRACT

In this study, we applied a membrane distillation process to investigate a feasibility of treating a wastewater with high concentration of organic matters including nitrogen and phosphorus. The laboratory scale experiment was performed by using a hydrophobic PVDF membrane with the pore size of 0.22 μ m and porosity of 75%. The installation was direct contact type where the temperature difference between a feed and permeate side was controlled to have a range from 20 to 60°C. We observed a flux variation and a concentration changes of COD, PO₄³⁻ – P, NH₄⁺–N and conductivity of feed side as well as permeate side with various temperature differences (20 to 60°C), cross flow velocities (0.09 to 0.27 m/s) through the module, and pH (6.6 to 12.0) of the feed that has the initial concentration of COD about 1,000 mg/L, total nitrogen 390 mg/L, total phosphorus 10 mg/L, conductivity of 7,000 μ s/cm. The results showed that the average flux was ranged from 4 to 40 L/m²/hr which was almost similar with the flux of NaCl and deionized water used as a feed solution. The lowest flux was obtained at the operating condition with the temperature difference of 20°C and cross flow velocity of 0.09 m/s while the highest one was measured with 60°C and 0.27 m/s. Above 99% of COD and PO₄³⁻–P in the feed could be rejected regardless of an operating condition. However, the removal rate of ammonium nitrogen was varied from 64 to 99% depending on the pH of feed solution.

Key words: Membrane distillation, Flux, Wastewater treatment, Temperature difference, cross flow velocity, removal efficiency **주제어:** 막 증발법, 투과 유속, 하폐수 처리, 온도차, 유속, 제거율

1. 서 론

막 증발법(Membrane Distillation, 이하 MD)은 소수 성 표면을 가지는 다공성 분리막(porous hydrophobic membranes)을 이용하여 원수(feed water)로부터 순수한 증기상태의 물만을 추출해내는 공정이다. 물질이동의 주요 요인은 분리막을 경계로 높은 온도의 원수(feed side)와 보다 낮은 온도의 처리수(permeate side) 사이 에 형성되는 온도구배이며, 이러한 온도차이로 인해 형성되는 물의 증기압(vapour pressure) 차이는 액체상 태의 물이 수증기 상태로 전환되면서 원수로부터 처 리수쪽으로 이동하게 만드는 구동력(driving force)이 된다(Lawson and Lloyd, 1997; Alkhudhiri et al., 2012). 이때 분리막의 공극을 통하여 수증기 상태의 물만을 이동시키고 액체 상태의 물은 이동할 수 없도록 하기 위해서 소수성 표면을 가지는 분리막이 필요하다. 높

Received 9 April 2015; Revised 13 April 2015; Accepted 15 April 2015 *Corresponding author: Cho, Jinwoo (E-mail: jinwoocho@sejong.edu)

은 온도의 원수 쪽에서 분리막을 통해 이동한 수증기 상태의 물은 낮은 온도의 처리수 쪽에서 다시 액체 상태로 응축된다. 소수성 분리막을 경계로 원수와 처 리수간에 온도차이가 일정하게 유지되는 동안에는 처 리수 중 액체 상태 물이 다시 원수 쪽으로 증발하여 역으로 이동할 수는 없으며, 따라서 전체 시스템이 포 화증기압에 도달하지 못하므로 지속적인 수증기의 이 동을 유도하게 된다(Kim, 2013). 이 과정에서 주어진 온도 조건 하에서 물의 증기압 보다 높은 증기압을 가지는 물질의 이동은 일어나지 않거나 또는 물보다 훨씬 낮은 속도로 이동이 일어나므로 이론적으로는 100% 순수한 물에 가까운 처리수를 생산해 낼 수 있 으며, 이러한 측면에서 수처리 분야에서는 최근 탈염 을 위한 방법으로써 막 증발법에 대한 연구가 다양하 게 진행되고 있다(El-Bourawi et al., 2006). 특히 해수 담수화 분야에서는 염 제거를 위한 방법으로써 기존 의 역삼투막(Reverse Osmosis, 이하 RO) 공정을 대체 하거나 담수화 과정에서 발생되는 농축수 처리에 막 증발법을 적용하려는 연구가 활발히 진행되고 있다. 이는 막 증발법을 통해 이론적으로 100% 순수한 물을 처리수로 생산할 수 있다는 것과 일정한 온도차만 유 지된다면 원수의 염 농도 및 성상에 관계없이 일정한 투과유속(flux)을 얻을 수 있다는 장점에서 기인한다 (Lagana et al., 2000). 기존 연구에 따르면 MD를 이용 한 해수 담수화 공정에서 염 제거율은 MD의 경우 100%, 회수율은 70-80% 수준, 투과유속은 85-120 LMH, 전력 소비는 1.3-1.5 kwh/m²로 보고하였으며 동일한 해 수에 대한 RO공정의 성능은 염 제거율 98%-99%, 회 수율 40-70% 수준, 투과유속은 5-10 LMH, 전력 소비 는 4 kwh/m²로 MD공정의 해수담수화 가능성을 높게 평가하고 있다(Macedonio et al., 2008; Busch et al., 2009). 물론 이 연구들은 랩 규모의 실험 결과이며 MD 구동 에 필요한 온도차를 얻기 위해 태양광 등 신재생에너 지를 사용함으로써 MD 공정에서 필요로 하는 에너지 를 낮게 평가한 측면이 있다. 또한 MD의 경우는 막 오염(분리막 표면이 친수화되는 wetting현상을 포함한 광의의 개념) 제어를 위한 시스템 유지관리 전략, 처 리수량 및 수질의 안정성 확보 등 현장 적용성 측면 에서는 여전히 연구되어야 할 분야가 많으며 따라서 현장에서 대규모로 적용되고 있는 RO공정을 바로 대 체할 수 있는 단계는 아니다(Gryta., 2008).

이러한 MD공정을 활용한 염 제거 기술은 이미 1963년 Bodell

에 의해 제시되었으며, 이후 식품 및 의약품 생산에 있어서 원료 농축 및 각종 염 제거 방법으로 적용되어온 기술이다 (Khayet et al., 2011). 그러나 현재까지 MD공정을 이용한 하·폐수처리에 관한 연구는 매우 부족한 실정이다. 따라 서 본 연구에서는 특히 고농도의 하·폐수를 처리하기 위한 방법으로써 막 증발법의 적용가능성에 대해 살펴보 고자 한다. 이를 위하여 다양한 온도와 모듈 내부를 흐르는 유속 조건 및 pH에 따른 분리막 투과 유속(Flux)의 변화를 측정하고 각 조건에서 처리수 내 전기전도도 변화 및 COD, PO₄³⁻ – P, NH₄⁺ – N 제거율 변화를 관측하였다. 유입수로는 일반적인 담수화 공정 연구에서 많이 사용되 는 NaCl과 고농도 하·폐수를 모사한 인공하수를 직접 제조하여 사용하였고 그 결과를 비교하였다.

2. 실험재료 및 방법

2.1 Lab-Scale 장치 개요

실험을 위해 투명아크릴 재질의 DCMD (Direct contact membrane distillation)방식의 모듈 및 시스템을 구성하 였다(Fig 1). 분리 막은 시중에서 판매되는 PVDF (polyvinylidene fluoride)재질의 소수성 막(Millipore GVHP, USA)을 구입한 뒤 모듈의 크기에 맞게 재단하여 사용 하였고 이때 분리 막의 유효면적은 1.75×10⁻³ m² 이다. 분리막 공극의 평균크기는 0.22 µm, 두께는 125 µm, 공극률은 75% 이다. 분리막을 경계로 모듈의 한쪽 측 면에는 water bath (Scilab SB-11) 를 통해 일정한 온도 로 가온되고 있는 유입수가 지나가며, 반대쪽 측면에 는 열교환기와 냉각수 순환장치(Scilab SCR-P12) 를 거쳐 유입수 보다 낮은 온도로 유지되고 있는 처리수 가 흐르게 구성하였다. 유입수 및 처리수는 펌프 (Cole-parmer console drive gear pump)를 이용하여 일 정한 유속으로 분리 막 모듈을 지나가되 서로 반대방 향으로 흐르면서 순환되도록 하였다. 유입수와 처리 수의 온도 차이에 의해 물의 증기압 차이가 발생되고 소수성 막을 경계로 유입수 측면에서 처리수 측면으 로 수증기의 이동이 이루어진다. 이렇게 이동한 수증 기는 처리수 측면에서 낮은 온도로 인하여 응축되어 순환되고 있는 처리수의 질량을 증가시킨다. 처리수 질량의 변화를 전자저울(Ohaus arg4202) 에 의해 3분 간격으로 관측하고 다음 식(1)에 의하여 투과유속(flux) 을 산출하였다.

Fig. 1. Schematic diagram of lab-scale DCMD process used in this study.

$$J=(\rho \cdot dm)/(A \cdot dt)$$
(1)

여기서, p는 온도에 따른 물의 밀도, m은 처리수 질량, A는 분리막 유효 면적, t는 시간이다.

2.2 실험 조건 및 시료 분석

유입수의 온도는 40, 50, 60, 70, 80°C로 유지하였다. 처리 수 온도는 모든 경우에 있어서 20°C로 유지하였다. 따라서 유입수와 처리수 사이의 온도 차이는 20, 30, 40, 50, 60°C가 된다. 각 온도 차이에 있어서 모듈 내부를 흐르는 유입수와 처리수의 유속(cross-flow velocity)는 0.09, 0.18, 0.27 m/s의 세 가지 조건으로 설정하였고 따라서 총 15가지 운전 조건 에 따른 투과유속의 변화를 관측하였다.

투과실험에 사용된 유입원수는 인공하수를 제조하 여 사용하였다. 연구 목적에 따라 고농도 하폐수를 모 사하기 위하여 화학적산소요구량(COD), 총 질소(TN) 및 총 인(TP)의 농도가 각각 1,000, 390 및 10 mg/L가 되도록 하였고 pH는 6.6-6.9의 범위를 가진다(Table 1). 유입수 및 처리수의 수질 항목 분석은 COD, NH4⁺-N, PO4³⁻-P의 경우 모두 standard methods (APHA, 2012) 에 준하여 수행하였다. 이외에 pH, 온도, 전기전도도 는 휴대용 측정 장비를 사용하여 측정하였다.

유입수의 pH에 따른 MD공정의 성능변화를 평가하 기 위하여 유입수의 pH를 8, 9, 10, 11, 12로 조절한 뒤 투과실험을 수행하였다. 이때, 각 pH조건에서 유입수 와 처리수 사이의 온도 차이는 40°C로 하였고 모듈 내부 를 흐르는 유입수와 처리수의 유속(cross-flow velocity) 은 0.18 m/s로 설정하였다.

Table	1. Characteristics	of the	synthetic	wastewater	used	in
	this study					

	/				
C	Components	Dosage	Concentration		
	Glucose	1g/1L	COD 1,000 mg/L		
P (stock)	KH ₂ PO ₄	8.5g/L			
	K ₂ HPO ₄	21.75g/L	TP 10 mg/L		
	Na ₂ HPO ₄ ·12H ₂ O	44.61g/L			
N	(NH ₄) ₂ SO ₄	1.84g/L	TN 390 mg/L		

3. 실험결과 및 고찰

3.1 운전 조건에 따른 투과 유속 변화

유입수 성상과 운전 조건에 따른 투과 유속 변화 (Flux) Fig. 2에 나타내었으며, 각 운전조건에서의 평 균 투과 유속 값(80분 동안 측정한 Flux값의 평균)을 Table 2에 제시하였다.

유입수를 0.5M NaCl로 실험을 수행했을 경우, 모듈 내부를 흐르는 유입수와 처리수의 유속(cross-flow velocity)이 0.09 m/s인 조건에서 유입수와 처리수의 온 도 차이를 20, 30, 40, 50, 60°C로 증가 시켰을 때, 평 균 Flux는 각각 4.21, 7.37, 11.87, 20.30, 23.39 L/m²/h로 증가 하는 것을 볼 수 있다. 마찬가지로 유속이 0.18, 0.27 m/s인 경우도 온도 차이가 증가함에 따라 평균 Flux가 증가하는 것을 알 수 있다. 또한 유입수와 처 리수의 온도 차이가 20°C인 조건에서 모듈 내부를 흐 르는 유입수와 처리수의 유속(cross-flow velocity)이 0.09, 0.18, 0.27 m/s로 증가할수록 평균 Flux는 각각 4.21, 3.13, 4.40 L/m²/h로 큰 차이를 보이지 않았으나 다른 온도 차이에 있어서는 유속의 증가에 따라 평균 Flux가 증가하는 것을 볼 수 있다. 예를 들어, 온도 차 이가 40°C인 조건에서 유속의 차이가 0.09, 0.18, 0.27 m/s로 증가함에 따라 평균 Flux는 각각 11.87, 18.15, 19.33 L/m²/h로 증가하며, 이러한 현상은 유입수와 처 리수의 온도차이가 30, 50, 60°C일 때도 마찬가지이다 (Fig. 2a). 즉, 온도차이가 증가할수록, 유속이 증가할 수록 평균 Flux는 증가함을 알 수 있다. Table 3에 기 존의 연구결과와 본 연구에서의 실험결과를 비교하였 다. 각 실험에서의 운전조건 및 실험에 사용된 분리 막의 특성이 상이함으로 단순한 비교는 불가하나 대 체적으로 동일한 재질의 분리막인 경우 온도차이가 클 수록, 유속이 빠를수록 높은 Flux를

	Y							
\bigtriangledown	(a)	0.	5M Na	Cl	Synthetic Wastewater			
(d) (c) (b)		0.09	0.18	0.27	0.09	0.18	0.27	
40	20	4.21	3.13	4.40	3.42	4.41	5.76	
50	20	7.37	11.68	12.32	7.52	12.40	13.44	
60	20	11.87	18.15	19.33	15.10	17.39	19.33	
70	20	20.30	25.73	29.09	20.21	28.36	29.17	
80	20	23.39	34.71	42.15	26.40	39.43	39.78	
$ \begin{array}{r} 40 \\ 50 \\ \hline 60 \\ \hline 70 \\ \overline 80 \\ \end{array} $	20 20 20 20 20 20	4.21 7.37 11.87 20.30 23.39	3.13 11.68 18.15 25.73 34.71	 4.40 12.32 19.33 29.09 42.15 	3.42 7.52 15.10 20.21 26.40	4.41 12.40 17.39 28.36 39.43	5.7 13. 19. 29. 39.	

Table 2. Flux variations with different operating conditions (pH 6.6-6.9) (unit: $L/m^2/hr$)

(a) Feed type

(b) Cross-flow velocity (m/s)

(c) Permeate side temperature (°C)

(d) Feed side temperature (°C)

나타내며 유사한 운전조건에서는 PVDF 계열의 분리 막보다는 PTFE 계열의 분리 막에서 더 높은 Flux를 가지는 것을 알 수 있다. 또한 NaCl의 농도는 평균 Flux에 큰 영향을 미치지 않는다(Lawson et al., 1997). 인공하수가 유입수인 경우는 모듈 내부를 흐르는 유입 수와 처리수의 유속(cross-flow velocity)이 0.09 m/s인 조건 에서 유입수와 처리수의 온도 차이를 20, 30, 40, 50, 60°C 로 증가 시켰을 때, 평균 Flux가 각각 3.42, 7.52, 15.10, 20.21, 26.40 L/m²/h로 증가하였고, 마찬가지로 유속이 0.18, 0.27 m/s인 경우도 온도 차이가 증가함에 따라 평균 Flux가 증가하는 것을 알 수 있다. 또한 유입수와 처리수 의 온도 차이가 20°C인 조건에서 모듈 내부를 흐르는 유입수와 처리수의 유속(cross-flow velocity)이 0.09, 0.18, 0.27 m/s로 증가할수록 평균 Flux가 3.42, 4.41, 5.76 L/m²/h 로 증가하는 것을 볼 수 있다. 이러한 현상은 유입수와 처리수의 온도차이가 20, 30, 40, 50°C일 때도 유사한 경향을 나타낸다(Fig. 2b). 또한 유입수가 0.5M NaCl인 경우와 인공하수인 경우 각 운전조건별 평균 Flux 값에는 큰 차이가 없다(Table 2 참조).

이상의 결과는 MD공정에서 분리막 투과 현상은 높은 온도의 유입수와 보다 낮은 온도의 처리수 사이에서 발생 하며, 유입수와 처리수 사이의 온도차이가 클수록 온도구 배가 더 크게 형성되므로 투과 유속도 커지게 되는 사실에 서 기인한다(Liu et al., 2013; Hou et al., 2010). 또한 모듈 내부를 흐르는 유입수와 처리수의 유속(cross-flow velocity)이 빠를수록 분리막을 통한 열전도 현상을 줄여 주기 때문에 열 손실을 방지하여 유입수와 처리수 사이의 온도 차이를 지속적으로 유지시키게 함으로써 높은 Flux 를 얻게 된다(Liu et al., 2013; Gryta et al., 2001).

운전조건(온도차, 유속)에 따른 막 오염 발생여부를 살펴보기 위하여 pH 6.6-6.9 인 경우 clean water Flux 대 비 0.5M NaCl과 인공하수의 평균 Flux 비율(Flux ratio) 을 Fig. 3에 나타내었다. Fig. 3a에서 보듯이 0.5M NaCl 에 대한 Flux ratio 값은 운전조건(온도차, 유속)에 관계 없이 평균 0.97±0.08(최소 0.8, 최대 1.09)으로 측정되었 고, 따라서 clean water Flux와 큰 차이가 없음을 알 수 있다. 또한 Fig. 3b에서 인공하수에 대해서도 역시 Flux ratio 값은 운전조건(온도차, 유속)에 관계없이 평균 1.01±0.11(최 소 0.82, 최대 1.21)으로 측정되었고, 따라서 이 역시 clean water Flux와 큰 차이가 없음을 알 수 있다. 이는 0.5M NaCl과 인공하수를 유입수로 한 실험에서 막 젖음 (wetting)현상이나 막 표면의 여과저항층(cake layer)

			-			
NaCl	Cross-flow	Temp.	Flux	Characteristics	References	
concentration (g/L)	velocity (m/s)	Difference (°C)	(L/m²/h)	of membrane ¹⁾		
10	0.36	40	26.2	PTFE ²⁾ /1.00/-	Zhang et al., 2010	
0.6	1.75	10-40	10-80	PTFE/0.22/70	Cath et al., 2004	
177.6	0.145	47.5	25.2 - 28.8	PVDF ³⁾ /0.20/80	Yun et al., 2006	
0.5	-	35	13.5	PVDF/0.45/-	Koo et al., 2012	
29.2	0.09-0.27	20-60	3.13-42.15	PVDF/0.22/75	This study	

Table 3. Flux variation of NaCl solution with different operating conditions of DCMD

1) membrane material / pore size (µm) / porosity (%)

2) PTFE : Polytetrafluoroethylene

3) PVDF : Polyvinylidene Flouride

Fig. 4. Variation of average flux with long term experiment for synthetic wastewater (pH 6.6-6.9, temperature difference= $\Delta 40^{\circ}$ C, cross-flow velocity=0.18 m/s)

형성에 따른 막 오염(fouling)현상이 발생하지 않았음을 의미한다. 인공하수를 대상으로 한 34시간 관측결과에서

도 일정한 Flux를 유지하였으며 이는 마찬가지로 막 젖음 이나 막 오염이 심각하게 발생하지 않았음을 나타낸다 (Fig. 4). 그러나 상기 모든 실험은 중성영역의 pH에서 유입수 중에 입자성 물질이 전혀 존재하지 않은 상태에서 진행된 것이므로 입자성 물질에 의한 여과저항층 형성 및 이에 따른 막 오염 가능성은 배제된 결과임에 유의해야 한다.

3.2 전기전도도 변화

처리수의 초기 전기전도도와 실험 종료 후 전기전도 도 값을 Table. 4에 제시하였다. NaCl이 유입수인 경우 전체적으로 운전조건에 관계없이 실험 전후 전기전도도 값은 차이가 없으며 따라서 대부분의 이온성 물질들이 분리 막을 통과하지 못 했음을 알 수 있다. 유입수가 인공하 수인 경우는 실험 전후 처리수 내 전기전도도 값의 차이가 최소 0.7 μS/cm(Δ40°C, 0.18 m/s), 최대 7.8 μS/cm(Δ40°C, 0.18 m/s)로 온도 차이와 유속의 증가에 따라서 더 많은

\square	(a)	0.5M NaCl					Synthetic Wastewater						
(b)		0.09		0.18		0.27		0.09		0.18		0.27	
(e)	(d)	initial	final	initial	final	initial	final	initial	final	initial	final	initial	final
40	20	2.5	2.9	2.1	2.8	2.2	3.0	1.0	1.7	1.5	4.0	1.5	4.8
50	20	7.9	7.7	9.1	9.0	9.8	9.7	1.0	3.7	2.0	6.3	1.0	5.6
60	20	1.4	2.2	2.5	3.3	33.2	32.3	1.1	4.8	13.6	17.1	5.4	11.5
70	20	10.4	10.1	10.0	9.8	5.5	5.8	1.0	5.5	1.0	7.3	1.8	8.6
80	20	1.4	1.7	4.9	5.2	4.2	4.3	5.5	9.8	2.0	8.7	1.9	9.7

Table 4. Initial and final conductivity of permeate side with different operating conditions (pH 6.6-6.9)

(a) Feed type

(b) Cross-flow velocity (m/s)

(c) Conductivity (µs/cm)

(d) Permeate side temperature (°C)

(e) Feed side temperature (°C)

(d) Variation of permeate conductivity for 36 hours (temperature difference= $\Delta 40^{\circ}$ C, cross-flow velocity=0.18 m/s)

Fig. 5. Variation of permeate conductivity with time at different operating conditions (permeate temperature is maintained at 20°C, pH 6.6-6.9)

양의 이온성 물질들이 분리 막을 통과하는 것으로 관측 되었다. 즉, Flux가 높을수록 처리수 내 전기전도도값도 증가하였다. 하지만 Fig. 5에서 보듯이 처리수 내 전기전 도도의 증가율은 시간에 따라 점차 감소하여 일정 시간 이후에는 더 이상의 전기전도도 값의 증가는 없을 것으 로 예상된다. 또한 장기실험 관측결과(Fig. 5d)에서도 전기전도도 값이 점차 증가하다가 10시간 이후에는 일 정한 값으로 수렴하는 것을 알 수 있다.

3.3 COD, PO4³⁻-P, NH4⁺-N 제거율

유입수 pH가 중성(6.6-6.9)에 가까운 경우 COD 제거 율은 최소 99.05 %부터 최대 100%까지 운전조건(온도차, 유속)에 관계없이 99% 이상으로 관측되었다 (Fig. 6a).

PO4³⁻-P의 제거율 역시 최소 99.52%부터 최대 99.68% 까지 모든 실험 조건에서 99.5% 이상의 제거율을 나타 냈다 (Fig. 6b). 또한 NH4⁺-N 역시 최소 99.65 %에서 최대 99.86 %의 높은 제거율을 보였다 (Fig. 6c).

3.4 pH변화에 따른 운전성능 변화

유입수의 pH가 투과 유속, 전기전도도 및 COD, PO4³⁻-P, NH4⁺-N 제거율에 미치는 영향을 살펴보 기 위하여 유입수 pH를 인위적으로 8, 9, 10, 11, 12로 조정 한 이후 투과 실험을 수행하였다. 각 pH조건에 서 유입수와 처리수의 온도 차이는 40°C를 유지하였 고 유속은 0.18 m/s로 설정하였다.

Fig. 7에 인공하수의 pH 변화에 따른 평균 Flux를 나타내었다. pH가 8, 9, 10, 11, 12로 증가함에 따라 평 균 Flux는 각각 17.39, 18.07, 18.11, 18.09, 18.97로 관 측되었다. 따라서 유입수 pH에 관계없이 80분간의 단 기 투과실험에서는 pH는 Flux에 큰 영향을 미치지 않 는 것으로 보인다.

한편, 실험 종료 후 처리수의 전기전도도와 초기 처 리수의 전기전도도 값의 차이(ΔEC)를 Fig. 8에 제시하 였다. 유입수 pH가 8, 9, 10, 11, 12로 증가하였을 때 ΔEC는 각각 15.4, 40, 65, 69.7, 71.8 μS/cm로 증가하였 다. 앞서 유입수의 pH가 중성에 가까운 경우 동일한 운전조건(Δ40°C, 0.18 m/s)에서 처리수의 전기전도도 가 초기 13.6 에서 17.1로 3.5 μS/cm만큼 증가한 것과 비교(Table. 4 참조)하면, 유입수의 pH가 8 이상인 경우

Fig. 7. Flux variation with different pH of feed (Synthetic wastewater, temperature difference= $\Delta 40^{\circ}$ C, cross-flow velocity=0.18 m/s)

Fig. 8. Change of electrical conductivity (Δ EC) of the permeate with different pH of feed solution (Synthetic wastewater, temperature difference= Δ 40°C, cross-flow velocity=0.18 m/s).

(b) Removal rate of $NH_4^+ - N$

Fig. 9. Removal rate of COD, $PO_4^{3-} - P$ and $NH_4^+ - N$ with different pH (Synthetic wastewater, temperature difference= $\Delta 40^{\circ}$ C, cross-flow velocity=0.18 m/s).

pH 증가에 따라 처리수 내 전기전도도가 큰 폭으로 증가하였음을 알 수 있다. 이는 pH 증가에 따라 유입 수 중 NH4⁺-N이 NH3로 전환되어 처리수 중으로 이 동하였기 때문이며 이 후 NH4⁺-N 제거율과 연관하 여 보다 자세히 논의하였다.

COD 제거율의 경우는 유입수 pH의 변화와는 큰 상 관관계를 보이지 않았으며 최소 99.09에서 최대 99.81% 의 제거율을 나타내었으며, PO4³⁻-P의 경우도 99.54~ 99.67%로 COD와 PO4³⁻-P 제거율은 모두 유입수가 중성에 가까운 경우와 유사하게 99% 이상의 높은 제 거율을 보였다(Fig. 9a). 하지만 NH4⁺-N의 경우에는 pH가 8에서 12로 증가할수록 NH4⁺-N의 제거율은 98.66%에서 63.59%로 감소하는 경향을 보였다(Fig. 9b). 이는 중성에 가까운 pH를 가지는 인공하수를 대상으 로 온도차이 40°C, 유속 0.18 m/s인 조건에서의 관측 된 제거율(99.6%)과 비교했을 때 최대 36.01%p 낮은 값이다. 이처럼 유입수의 pH 증가에 따라 NH4⁺-N의 제 거율이 낮아지는 이유는 유입수중에 존재하는 NH4⁺-N 이 pH증가에 따라 기체상태로 전환된 NH3의 상당부 분이 기화된 수증기와 함께 분리 막을 통과하여 처리 수쪽으로 이동하였기 때문으로 판단된다(Zarebska et al., 2014).

4.결 론

본 연구는 막 증발법을 사용한 고농도의 하폐수 처 리 가능성을 살펴보고자 하였다. 이를 위하여 0.5M NaCl과 인공하수를 대상으로 다양한 운전조건(온도 차, 유속, 유입수 pH)에서의 막 투과유속(Flux)과 처리 수 내 전기전도도 변화 및 COD, PO4³⁻-P, NH4⁺-N 제거율을 관측하였다. 실험 결과 유입수와 처리수 사 이의 온도차이가 증가할수록, 또한 모듈 내부를 흐르 는 유속이 증가할수록 Flux가 증가하는 것을 알 수 있 었다. 인공하수를 유입수로 하는 경우, pH가 중성에 가까운 영역에서는 처리수 내 전기전도도의 변화는 거의 없었으며 또한 COD, PO4³⁻-P 및 NH4⁺-N의 제거율 역시 운전조건(온도차, 유속)에 관계없이 99% 이상으로 높은 수준의 처리효율을 나타내었다. 유입 수의 pH가 8이상으로 증가하는 경우는 pH 증가에 따 라 처리수의 전기전도도가 증가하였으나 일정 시간 이후에는 증가율이 감소하면서 특정한 값으로 수렴하 는 것으로 관측되었다. 하지만 COD와 PO4³⁻-P의 경

우에는 유입수의 pH가 8 이상으로 증가하는 경우에도 99% 이상의 높은 처리효율을 나타내었다. 반면 NH4⁺ -N의 경우에는 유입수의 pH가 증가할수록 제거율이 급격히 감소하는 것으로 나타났다. 이는 pH 증가에 따라 유입수 중의 NH4⁺-N가 기체상태의 NH3로 전환 되어 수증기와 함께 분리막을 통과하였기 때문이다.

사 사

본 연구는 환경부 환경산업선진화기술개발사업 (ARQ201403220) 및 한국연구재단 신진연구자지원사 업(2012R1A1A1006307)의 지원을 받아 수행되었음

References

- Alkhudhiri, A., Darwish, N., Hial, N. (2012) Membrane distillation: a comprehensive review, Desalination, 287, pp. 2-18.
- Busch, M., Chu, R., Kolbe, U., Meng, Q., Li, S. (2009) Ultrafiltration pretreatment to reverse osmosis for seawater desalination-three years field experience in the Wangtan Datang power plant, Desalination and Water Treatment, 10, pp. 1 - 20.
- Cath, T.Y., Adams, V.D., Childress, A.E. (2004) Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement, Journal of Membrane Science, 228, pp. 5-16.
- El-Bourawi, M.S., Ding, Z., Ma, Z., Khayet, M. (2006) A framework for better understanding membrane distillation separtion process, Journal of Membrane Science, 285, pp. 4-29.
- Gryta, M., Tomaszewska, M., Grzechulska, J., Morawski, A.W. (2001) Membrane distillation of NaCl solution containing natural organic matter, Journal of Membrane Science, 181, pp. 279-287.
- Gryta, M. (2008) Fouling in direct contact membrane distillation

process, Journal of Membrane Science, 325, pp. 383-394.

김세운・이동우・민경진・조진우

- Hou, D., Wang, J., Sun, X., Luan, Z., Zhao, C., Ren, X. (2010) Boron removal from aqueous solution by direct contact membrane distillation, Journal of Hazardous Materials, 177, pp. 613-619.
- Khayet, M., and Matsuura, T. (2011) Membrane distillation: principles and applications, Elsevier, Oxford, pp.5.
- Kim, A.S. (2013) A two-interface transport model with pore-size distribution for predicting the performance of direct contact membrane distillation (DCMD), 428, pp. 410-424.
- Koo, J.W., Han, J., Lee, S., Sohn, J., Cho, J.S. (2012) Development of nano-carbon bucky-paper membranes for membrane distillation, Materials Science Forum, 724, pp. 408-411.
- Lagana, F., Barbien, G., Drioli, E. (2000) Direct contact membrane distillation: modelling and concentration experiments, Journal of Membrane Science, 166, pp. 1-11.
- Lawson, K.W., and Lloyd, D.R. (1997) Membrane distillation, Journal of Membrane Science, 124, pp. 1-25.
- Liu, H., and Wang, J. (2013) Treatment of radioactive wastewater using direct contact membrane distillation, Journal of Hazardous Materials, 261, pp. 307-315.
- Macedonio, F., and Drioli, E. (2008) Pressure-driven membrane operations and membrane distillation technology integration for water purification, Desalination, 223, pp. 396-409.
- Yun, Y., Ma, R., Zhang, W., Fane, A.G., Li, J. (2006) Direct contact membrane distillation mechanism for high concentration NaCl solutions, Desalination, 188, pp. 251-262.
- Zarebska, A., Nieto, D.R., Christensen, K.V., Norddahl, B. (2014) Ammonia recovery from agricultural wastes by membrane distillation: Fouling characterization and mechanism, Water Research, 56, pp. 1-10.
- Zhang, J., Dow, N., Duke, M., Ostarcevic, E., Li, J.D., Gray, S. (2010) Identification of material and physical features of membrane distillation membranes for high performance desalination, Journal of Membrane Science, 349, pp. 295-303.

269