DOI QR코드

DOI QR Code

Column Test for Evaluation on Removal Efficiency of Heavy Metal and Nutrients by Double Layered Permeable Reactive Barrier

주상실험을 통한 연속식 반응벽체에서의 복합오염물질 제거능 평가

  • Oh, Myounghak (Coastal & Environmental Engineering Division, Korea Institute of Ocean Science & Technology) ;
  • Kim, Yongwoo (Environmental Standard Management Office, Korea Environmental Industry & Technology Institute) ;
  • Park, Junboum (Department of Construction & Environmental Engineering, Seoul National University) ;
  • Kwon, Osoon (Coastal & Environmental Engineering Division, Korea Institute of Ocean Science & Technology)
  • Received : 2015.01.29
  • Accepted : 2015.04.01
  • Published : 2015.05.01

Abstract

The double sheeted permeable reactive barrier containing two different reactive materials can be applied to remediate the groundwater contaminated by nutrients and heavy metals. In this study, in order to evaluate the removal efficiency of contaminants including ammonium, cadmium and phosphate by double layered permeable reactive barrier containing zeolite and steelmaking slag, column tests were performed. In addition, nonequilibrium reaction in column tests was analyzed by two-site nonequilibrium advection-dispersion model. Column test results showed that zeolite is effective for removal of ammonium, while steelmaking slag is effective for removal of phosphate and cadmium. The sequential reaction of zeolite and steelmaking slag gave the better removal efficiency for ammonium.

지하수 내에 영양염류와 중금속 등의 오염물질이 동시에 존재하는 경우 두 가지 이상의 반응성 매질을 적용한 연속식 반응벽체공법이 적용될 수 있다. 본 연구에서는 영양염류 오염물질인 암모늄과 인산염, 그리고 중금속인 카드뮴의 복합오염물질의 제거를 위해 제올라이트와 제강슬래그를 반응성 매질로 구성한 연속식 반응벽체공법의 적용성을 평가하였다. 흐름 조건을 모사한 주상실험을 수행하여 제올라이트와 제강슬래그와의 연속반응에 의한 오염물질의 제거효과를 평가하였다. 주상실험결과는 비평형 이류확산 모델을 적용하여 주상실험에서의 비평형 반응을 해석하였다. 주상실험을 통해 제올라이트는 암모늄 제거에 효과적이며 제강슬래그는 인산염과 카드뮴 제거에 효과적임을 확인하였으며, 연속식 반응벽체 구성 시 제올라이트와 제강슬래그 순서로 반응시키는 조건이 효과적인 것으로 나타났다.

Keywords

References

  1. Cameron, D. A. and Klute, A. (1977), Conventive-dispersive solute transport with a combined equilibrium and kinetic adsorption model, Water Resources Research, Vol. 13, pp. 197-199. https://doi.org/10.1029/WR013i001p00197
  2. Dimitrova, S. and Mehanjiev, D. (2000), Interaction of blastfurnace slag with heavy metal ions in water solutions, Water research, Vol. 34, No. 6, pp. 1957-1961. https://doi.org/10.1016/S0043-1354(99)00328-0
  3. Kim, E. H., Rhee, S. S., Lee, G. H., Kim, Y. W., Park, J. B. and Oh, M. H. (2011), Assessment of the sorption characteristics of cadmium onto steel-making slag in simulated sea water using batch experiment, Journal of the Korean Geotechnical Society, Vol. 27, No. 4, pp. 43-50 (in Korean). https://doi.org/10.7843/kgs.2011.27.4.043
  4. Kim, S. K., Chung, H. I., Yu, J. and Chang, W. S. (2005), Study on absorption of heavy-metals and organic-materials for utilizing atomizing-slag to media of reactive barrier, the proceedings of Korean Society of Civil Engineers Conference 2005, Jeju, Korea, pp. 2816-2819 (in Korean).
  5. Kim, Y. W., Oh, M. H., Park, J. B. and Kwon, O. S. (2014), Removal efficiency of heavy metals and nutrients by zeolite and basic oxygen furnace slag, Journal of the Korean Geo-Environmental Society, Vol. 15, No. 11, pp. 13-19 (in Korean).
  6. Koon, J. and Kaufman, W. (2010), Ammonia removal from municipal wastewaters by ion exchange, Water Environmental Federation, Vol. 47, No. 3, Part 1, pp. 448-465.
  7. Lee, G. H., Kim, E. H., Park, J. B. and Oh, M. H. (2011), Estimation of the removal capacity for cadmium and calculation of minimum reaction time of BOF slag, Journal of the Korean Geotechnical Society, Vol. 27, No. 10, pp. 5-12 (in Korean). https://doi.org/10.7843/kgs.2011.27.10.005
  8. Naoto, T. (2005), Atals of Eh-pH diagrams: Intercomparison of thermodynamic databases, Geological Survey of Japan Open File Report No. 419, pp. 154-155.
  9. Nkedi-Kizza, P., Biggar, J. W., Selim, H. M., van Genuchten, M. Th., Wierenga, P. J., Davidson, J. M. and Nielsen, D. R. (1984), On the equivalence of two conceptual models for describing ion exchange during transport through an aggregated oxisol, Water Resources Research, Vol. 20, No. 8, pp. 1123-1130. https://doi.org/10.1029/WR020i008p01123
  10. Nuria, M., Cesar, V., Ignasi, C., Maria, M. and Antonio, F. (2010), Cadmium and lead removal from aqueous solution by grape stalk waste: modeling of a fixed-bed column, Journal of Chemical Engineering, Vol. 55, pp. 3548-3554.
  11. Park, D. H., Lim, S. R., Lee, H. W. and Park, J. M. (2008), Mechanism and kinetics of Cr(VI) reduction by waste slag generated from iron making industry, Hydrometallurgy, Vol. 93, No. 1-2, pp. 72-75. https://doi.org/10.1016/j.hydromet.2008.03.003
  12. Park, J. B., Lee, S. H. and Lee, C. Y. (2002), Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite, Journal of Hazardous Materials, Vol. 95, No. 1-2, pp. 65-79. https://doi.org/10.1016/S0304-3894(02)00007-9
  13. Toride, N., Leij, F. J. and van Genuchten, M. T. (1995), The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Version 2.0, California, U.S. Salinity Laboratory ARS USDA Riverside, Research Report No. 137, pp. 59-84.