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Talbot Interferometry for Measuring the Focal Length of a Lens without Moiré Fringes
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A simple method to determine the focal length of a lens using the Talbot image is presented. This 
method uses only one grating, requiring neither Moiré fringe analysis nor the angle between the gratings. 
The original Fourier transform was used to access the spectrum beyond the limitation set of the usual 
fast Fourier transform to determine the (de)magnification accurately enough to be used for the focal length. 
A set of Talbot images simulated numerically with the Fresnel diffraction integral was used to demonstrate 
the method. For focal lengths between 5550 mm and 5650 mm, the mean difference between the focal 
lengths determined from the Talbot images and the true values was 3.3 mm with the standard deviation 
of the difference being 3.8 mm. The true focal lengths can be recovered with an accuracy of 0.06%.
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I. INTRODUCTION

Moiré interferometry is the most commonly used method 
for examining long focal lengths and is based on the Talbot 
effect and Moiré fringe analysis [1-3]. When a plane wave 
is incident upon a periodic transmission grating, a self-image 
of the grating is formed at regular distances from the grating, 
the so-called Talbot distance and its multiples, and a similar 
phenomenon occurs when a grating is placed in a converging 
or diverging beam. In this case the self-image of the grating 
becomes (de)magnified and the magnification, which depends 
on the convergence of the beam and on the distance away 
from the grating, is the key aspect for determining the focal 
length of the lens. To determine the magnification, the 2nd 
grating is normally placed at the (de)magnified image of the 
1st grating to form a superimposed pattern of the two gratings, 
the so-called Moiré fringe. The 2nd grating is normally rotated 
by a small angle with respect to the 1st grating and the 
angle between the gratings affects the Moiré fringe overall. 
Therefore, precise information on the angle between the 
gratings is as important as analyzing the fringe accurately.

This paper presents a simple way of determining the magnifi-
cation by analyzing the (de)magnified Talbot image directly. 
Neither Moiré fringe analysis nor the information on the 
2nd grating is required.

To demonstrate the validity of the method, two aspects 

need to be considered: the accuracy of the determination 
and an accurate method to determine the (de)magnification. 
To address the accuracy, this paper presents a set of numerically-
simulated Talbot images by propagating a converging beam 
numerically (using a two-step transfer function approach to 
calculate the Fresnel diffraction integral) through a binary 
grating and to a detector. A long-focal-length system to be 
tested with the Talbot images formed by a grating, which 
is relatively small in size, can be represented with a high 
F/#, which guarantees that the numerical simulation is correct, 
and the set of specifications used for the simulation can be 
regarded as references or true values. Therefore, the difference 
between the analyzed values and true values can represent 
the accuracy of the method, which is described below.

One of best analyzing methods for the periodic images 
is to employ a Fourier transform, and a fast Fourier transform 
(FFT) is normally used for the frequency spectrum of the 
image because of the fast execution time. One drawback 
of the FFT is that the frequency spectrum consists of a finite 
number of values with a finite frequency interval given by 
the side length of the fringe image due to sampling the 
fringe. The original Fourier transforms (OFT) were employed 
to access the frequency spectrum beyond the limitation. The 
process was also iterated a number of times for better accuracy.

A set of numerically simulated Talbot images was used 
to demonstrate the validity of the proposed method.
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FIG. 1. Schematic diagram of the setup.

II. DETERMINATION OF FOCAL LENGTH 
FROM TALBOT IMAGE

Figure 1 shows a schematic diagram of the setup in which 
a positive lens causes a beam to converge as it propagates 
through a binary grating with period of p and to a detector. 
The grating is located at an arbitrary distance, L0, from the 
lens and the detector is located at the distance, d, from the 
grating, where a (de)magnified image of the 1st grating is 
measured.

The (de)magnified period of the 1st grating, p′, at the detector 
can be calculated using similar triangle properties with the 
help of Fig. 1, as follows:
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If L0 is measured from the back surface (the principal plane) 
of the lens, f will be the back (effective) focal length. 
Here the distance d is called the Talbot distance if the 
beam is collimated. For converging or diverging beams, the 
Talbot distance would be modified slightly [1]. It is important 
to have a sharp (de)magnified-image to form an optimal 
image with an accurate measurement of the distance between 
the grating and detector for a focal length determination. 
With the measured (de)magnification, p′/p, the focal length 
of the lens can be expressed as
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III. NUMERICAL SIMULATIONS OF 
TALBOT EFFECT

The simulation was composed of two elements: numerical 
beam propagation and an implementation of a binary grating 
with respect to an array representing the optical field in 
the simulation. An aperture was not needed in the actual 
experiments, but a circular pupil in contact with the test lens 
was used for the simulation. The beam was then propagated 
through the grating to generate a Talbot image. Both the 
propagation from the pupil to the grating and that from the 

grating to the detector were calculated using the Fresnel diffraction 
integral with a two-step transfer function approach, given by 
[4]
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where z is the propagation distance and k(=2π/λ) is the 
wave-number of the beam. The optical field u(x,y) is represented 
by an array of complex numbers and the symbol * in Eq. 
(3a) represents the convolution, which was carried out using 
the two-step FFT approach for optical field arrays [4]. The 
same numerical beam propagation was used to simulate the 
Ronchigrams [5]. To verify the numerical beam propagation, 
the beam size of a converging circular beam without aberrations 
as a function of the propagation distance was calculated. 
With proper sampling of the initial beam to avoid aliasing 
during the numerical propagation, the linear dependence of 
the beam size on the propagation distance was confirmed. 
The numerical simulation was developed as a MATLAB-based 
program [6].

The grating is treated as an amplitude filter during beam 
propagation; the grating is also represented by an array of 
real values, and each element of the array (hereafter, we 
refer to each element as a pixel) is assigned a value between 
0 and 1, where 0(1) corresponds to the case where the 
beam is blocked (transmitted) completely. The grating was 
assumed to be aligned vertically, and the first row of the 
corresponding array was filled with values between 0 and 
1 depending on the period of the grating and the pixel 
size. A fractional value was assigned to the pixels that 
corresponded to the edges of the grating. The subsequent 
rows of the array were duplicates of the first row, to 
represent the vertical binary grating. The grating was assumed 
to be a binary transmission grating with a square wave 
profile and a 50% duty cycle.

IV. ACCURATE DETERMINATION OF THE 
(DE)MAGNIFIED PERIOD

To discuss the period analysis, a set of simulated Talbot 
images was generated using the simulation system with the 
specifications listed in Table 1. To avoid aliasing due to 
insufficient sampling in the simulations, an array of 2048×
2048 was used for the numerical beam propagation, and a 
circle of diameter 2000 pixels (where each pixel has a side 
of length 0.01 mm) was used to simulate a circular beam 
with a diameter of 20 mm. The distance from the grating 
to the detector was set as the first Talbot distance.
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TABLE 1. Specification of the system described in the text

Parameters Values
Wavelength of light 0.6328 µm

Focal length of the lens, f 5550~5650 mm
Distance from the lens to the grating, L0 100 mm

Period of the grating, p 0.2 mm
Distance from the grating to the detector, d 63.2 mm

(a)

(b)

FIG. 2. (a) Simulated Talbot image for the system with a focal 
length of 5600 mm with the other parameters described in 
Table 1. (b) Frequency spectrum of the image. The inset 
outlined with the red lines shows the magnified frequency 
spectrum centered at the spectral peak at 5.078 mm-1.

Figure 2(a) shows the simulated Talbot image for the 
focal length of 5600 mm and Fig. 2(b) presents the spatial 
frequency spectra calculated by FFT for the simulated image. 
The frequency spectrum is also an array of size, 2048×
2048, due to the array size for the image. Because the important 
information is located near the origin of the spectrum, Fig. 
2(b) only shows a partial array of size of 256×256 near 

the origin. The frequency spectrum at the origin is the sum 
of the intensities of all the pixels, and the rest of the 
spectrum becomes almost zero if the spectrum is normalized 
to it. Therefore, the spectrum at zero frequency was set to 
zero, and the rest of the spectrum was normalized to the 
intensity to fit into an 8-bit grayscale (with 256 grays) with 
black (white) being the minimum (maximum) intensity. Using 
the known length of the image (20.48 mm), the spatial 
frequency interval corresponding to each pixel in the spectrum 
can be calculated as 0.0488 (= 1/20.48) mm-1, and the 
(de)magnified period of the image can be calculated from 
the peak of the frequency spectrum if the spectrum peak is 
well defined, as shown in Fig. 2(b), where the peak is 
located at a pixel offset of (104,0) or (-104,0) from the origin. 
zand the (de)magnified period is 0.1969 mm (=20.48/104), 
whereas the precise corresponding value is 0.1977 mm, as 
calculated by Eq. (1). If the coarse (de)magnified period is 
used to determine the focal length of the lens, Eq. (2) 
equals 4208 mm, which is 1392 mm away from the true 
value.

One way to improve FFT analysis is to apply the center-
of-mass algorithm to calculate the centroid of the spectrum 
peak. With the algorithm, the centroid of the 5×5 pixels centered 
at (104,0) from the origin turns out to be (103.652,0) from 
the origin, which corresponds to a spatial frequency of 5.0611 
mm-1. Therefore, the corresponding focal length becomes 
5332 mm, which is better than previous one with a difference 
of 268 mm.

To calculate the centroid of the spectrum peak with much 
higher accuracy, the alternative to the FFT was considered. 
The FFT was developed to reduce the execution time by 
sacrificing the frequency components. Therefore, the original 
Fourier transform (OFT) was utilized and the exact procedure 
is as follows: 1) a square region of the spectrum centered 
on the spectral peak obtained by the FFT is divided into a 
5-by-5 grid of frequency components; 2) the spectra for 
the frequency components are calculated with the OFT; 3) 
among the 25 spectra, the maximum component is searched 
for and found; 4) a new square region, which is centered 
on the new component and has a side length that is half 
that of the previous region, is subdivided again; and 5) the 
searching procedure is repeated a number of times. Figure 3 
presents the surface plot of the 25 frequency spectra after 
9 iterations of the OFT procedure. The symmetrical shape 
of the surface plot validates the procedure and the top of 
the surface corresponds to the centroid of the spectrum peak, 
which is (5.0581, 0) mm-1. The (de)magnified period can 
be calculated using the centroid of the peak of 0.197703 
mm and the determined focal length of 5602.8 mm. The 
difference is only 2.8 mm.

Once the accuracy of the focal length with OFT analysis 
is achieved, a set of Talbot images is simulated numerically 
for the system with the specifications listed in Table 1 and 
the focal length ranging from 5550 mm to 5650 mm, and 
Fig. 4 shows the (de)magnified periods and the corresponding 
focal lengths determined with OFT as a function of the 
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FIG. 3. Surface plot of the frequency spectrum centered at 
(5.0581, 0) mm-1 for the Talbot image shown in Fig. 2.

(a) (b)

FIG. 4. Determined (de)magnified period p’ (a) and the 
corresponding focal length (b) for the Talbot images 
numerically simulated for the system of focal lengths and 
other paramters described in Table 1.

focal length, respectively. The standard deviation of the 
difference in the determined focal lengths is 3.8 mm and 
the average difference is 3.3 mm, indicating an accuracy 
of approximately 0.06 %.

V. SUMMARY

This paper presented a method for determining the focal 
length with Talbot images. Neither the Moiré fringes nor 
mathematical calibration was used, but applying the original 

Fourier transform to the (de)magnified Talbot images demon-
strated that the true values can be recovered with sufficient 
accuracy to determine the focal length of the system. The 
setup is much simpler than the usual setup with Moiré fringes, 
and the simple apparatus certainly means fewer factors that 
affect the measurements. The (de)magnification depends on 
the distances between the elements as well as the image 
quality. A study of these dependences and further improvements 
will be the subject of future work.
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