Acknowledgement
Supported by : Soonchunhyang University
References
- Choi HK, Mount DB, Reginato AM; American College of Physicians; American Physiological Society. Pathogenesis of gout. Ann Intern Med 2005;143:499-516. https://doi.org/10.7326/0003-4819-143-7-200510040-00009
- Zaka R, Williams CJ. New developments in the epidemiology and genetics of gout. Curr Rheumatol Rep 2006;8:215-223. https://doi.org/10.1007/s11926-996-0028-0
- Choi HK, Zhu Y, Mount DB. Genetics of gout. Curr Opin Rheumatol 2010;22:144-151. https://doi.org/10.1097/BOR.0b013e32833645e8
- Wang B, Miao Z, Liu S, et al. Genetic analysis of ABCG2 gene C421A polymorphism with gout disease in Chinese Han male population. Hum Genet 2010;127:245-246. https://doi.org/10.1007/s00439-009-0760-4
- Dehghan A, Kottgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 2008;372:1953-1961. https://doi.org/10.1016/S0140-6736(08)61343-4
- Wallace SL, Robinson H, Masi AT, Decker JL, McCarty DJ, Yu TF. Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum 1977;20:895-900. https://doi.org/10.1002/art.1780200320
- Hedrick PW. Gametic disequilibrium measures: proceed with caution. Genetics 1987;117:331-341.
- Kaplan N, Weir BS. Expected behavior of conditional linkage disequilibrium. Am J Hum Genet 1992;51:333-343.
- Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001;68:978-989. https://doi.org/10.1086/319501
- Park JW, Ko DJ, Yoo JJ, et al. Clinical factors and treatment outcomes associated with failure in the detection of urate crystal in patients with acute gouty arthritis. Korean J Intern Med 2014;29:361-369. https://doi.org/10.3904/kjim.2014.29.3.361
- Choi HK, Ford ES, Li C, Curhan G. Prevalence of the metabolic syndrome in patients with gout: the Third National Health and Nutrition Examination Survey. Arthritis Rheum 2007;57:109-115. https://doi.org/10.1002/art.22466
- Krishnan E, Baker JF, Furst DE, Schumacher HR. Gout and the risk of acute myocardial infarction. Arthritis Rheum 2006;54:2688-2696. https://doi.org/10.1002/art.22014
- Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation 2007;116:894-900. https://doi.org/10.1161/CIRCULATIONAHA.107.703389
- Choi HK, De Vera MA, Krishnan E. Gout and the risk of type 2 diabetes among men with a high cardiovascular risk profile. Rheumatology (Oxford) 2008;47:1567-1570. https://doi.org/10.1093/rheumatology/ken305
- McCarthy MI, Abecasis GR, Cardon LR, et al. Genome- wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 2008;9:356-369. https://doi.org/10.1038/nrg2344
- van der Harst P, Bakker SJ, de Boer RA, et al. Replication of the five novel loci for uric acid concentrations and potential mediating mechanisms. Hum Mol Genet 2010;19:387-395. https://doi.org/10.1093/hmg/ddp489
- Vitart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet 2008;40:437-442. https://doi.org/10.1038/ng.106
- Doring A, Gieger C, Mehta D, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet 2008;40:430-436. https://doi.org/10.1038/ng.107
- Woodward OM, Kottgen A, Coresh J, Boerwinkle E, Guggino WB, Kottgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A 2009;106:10338-10342. https://doi.org/10.1073/pnas.0901249106
- Shima Y, Teruya K, Ohta H. Association between intronic SNP in urate-anion exchanger gene, SLC22A12, and serum uric acid levels in Japanese. Life Sci 2006;79:2234-2237. https://doi.org/10.1016/j.lfs.2006.07.030
- Charles BA, Shriner D, Doumatey A, et al. A genome-wide association study of serum uric acid in African Americans. BMC Med Genomics 2011;4:17. https://doi.org/10.1186/1755-8794-4-17
- Matsuo H, Chiba T, Nagamori S, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet 2008;83:744-751. https://doi.org/10.1016/j.ajhg.2008.11.001
- Anzai N, Jutabha P, Amonpatumrat-Takahashi S, Sakurai H. Recent advances in renal urate transport: characterization of candidate transporters indicated by genome-wide association studies. Clin Exp Nephrol 2012;16:89-95. https://doi.org/10.1007/s10157-011-0532-z
- Preitner F, Bonny O, Laverriere A, et al. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc Natl Acad Sci U S A 2009;106:15501-15506. https://doi.org/10.1073/pnas.0904411106
- Matsuo H, Yamamoto K, Nakaoka H, et al. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. Ann Rheum Dis 2015 Feb 2 [Epub]. http://dx.doi. org/10.1136/annrheumdis-2014-206191.
- Hu M, Tomlinson B. Gender-dependent associations of uric acid levels with a polymorphism in SLC2A9 in Han Chinese patients. Scand J Rheumatol 2012;41:161-163. https://doi.org/10.3109/03009742.2011.637952
- Dong Z, Guo S, Yang Y, et al. Association between ABCG2 Q141K polymorphism and gout risk affected by ethnicity and gender: a systematic review and meta-analysis. Int J Rheum Dis 2015;18:382-391. https://doi.org/10.1111/1756-185X.12519
- Matsuo H, Takada T, Nakayama A, et al. ABCG2 dysfunction increases the risk of renal overload hyperuricemia. Nucleosides Nucleotides Nucleic Acids 2014;33:266-274. https://doi.org/10.1080/15257770.2013.866679
- Lv X, Zhang Y, Zeng F, et al. The association between the polymorphism rs2231142 in the ABCG2 gene and gout risk: a meta-analysis. Clin Rheumatol 2014;33:1801-1805. https://doi.org/10.1007/s10067-014-2635-x
- Matsuo H, Takada T, Ichida K, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med 2009;1:5ra11.
- Yamagishi K, Tanigawa T, Kitamura A, et al. The rs2231142 variant of the ABCG2 gene is associated with uric acid levels and gout among Japanese people. Rheumatology (Oxford) 2010;49:1461-1465. https://doi.org/10.1093/rheumatology/keq096
Cited by
- ABCG2 polymorphisms in gout: insights into disease susceptibility and treatment approaches vol.10, pp.None, 2017, https://doi.org/10.2147/pgpm.s105854
- Multiple Membrane Transporters and Some Immune Regulatory Genes are Major Genetic Factors to Gout vol.12, pp.None, 2015, https://doi.org/10.2174/1874312901812010094
- An update on the genetics of hyperuricaemia and gout vol.14, pp.6, 2018, https://doi.org/10.1038/s41584-018-0004-x
- Polymorphisms of ABCG2 and SLC22A12 Genes Associated with Gout Risk in Vietnamese Population vol.55, pp.1, 2015, https://doi.org/10.3390/medicina55010008
- Common gene variants interactions related to uric acid transport are associated with knee osteoarthritis susceptibility vol.60, pp.3, 2015, https://doi.org/10.1080/03008207.2018.1483359
- The ABCG2/BCRP transporter and its variants - from structure to pathology vol.594, pp.23, 2015, https://doi.org/10.1002/1873-3468.13947
- Medically Important Alterations in Transport Function and Trafficking of ABCG2 vol.22, pp.6, 2015, https://doi.org/10.3390/ijms22062786
- The Epidemiology and Genetics of Hyperuricemia and Gout across Major Racial Groups: A Literature Review and Population Genetics Secondary Database Analysis vol.11, pp.3, 2015, https://doi.org/10.3390/jpm11030231
- The haplotype of SLC2A9_rs3733591, PKD2_rs2725220 and ABCG2_rs2231142 increases the hyperuricaemia risk and alcohol, chicken and processed meat intakes and smoking interact with its risk vol.72, pp.3, 2015, https://doi.org/10.1080/09637486.2020.1807474