Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Einollahi B, Motalebi M, Salesi M, Ebrahimi M, Taghipour M. The impact of cytomegalovirus infection on new-onset diabetes mellitus after kidney transplantation: a review on current findings. J Nephropathol 2014;3:139-148.
- Palepu S, Prasad GV. New-onset diabetes mellitus after kidney transplantation: current status and future directions. World J Diabetes 2015;6:445-455. https://doi.org/10.4239/wjd.v6.i3.445
- Pham PT, Pham PM, Pham SV, Pham PA, Pham PC. New onset diabetes after transplantation (NODAT): an overview. Diabetes Metab Syndr Obes 2011;4:175-186.
- Park CW. Does nondiabetic renal disease exacerbate diabetic nephropathy in patients with type 2 diabetes? Korean J Intern Med 2013;28:544-546. https://doi.org/10.3904/kjim.2013.28.5.544
- Baid S, Cosimi AB, Farrell ML, et al. Posttransplant diabetes mellitus in liver transplant recipients: risk factors, temporal relationship with hepatitis C virus allograft hepatitis, and impact on mortality. Transplantation 2001;72:1066-1072. https://doi.org/10.1097/00007890-200109270-00015
- Bigam DL, Pennington JJ, Carpentier A, et al. Hepatitis C-related cirrhosis: a predictor of diabetes after liver transplantation. Hepatology 2000;32:87-90.
- Davidson J, Wilkinson A, Dantal J, et al. New-onset diabetes after transplantation: 2003 International consensus guidelines. Proceedings of an International Expert Panel Meeting. Barcelona, Spain, 19 February 2003. Transplantation 2003;75(10 Suppl):SS3-SS24.
- Hackman KL, Snell GI, Bach LA. Prevalence and predictors of diabetes after lung transplantation: a prospective, longitudinal study. Diabetes Care 2014;37:2919-2925. https://doi.org/10.2337/dc14-0663
- Ye X, Kuo HT, Sampaio MS, Jiang Y, Bunnapradist S. Risk factors for development of new-onset diabetes mellitus after transplant in adult lung transplant recipients. Clin Transplant 2011;25:885-891. https://doi.org/10.1111/j.1399-0012.2010.01383.x
- Kamar N, Mariat C, Delahousse M, et al. Diabetes mellitus after kidney transplantation: a French multicentre observational study. Nephrol Dial Transplant 2007;22:1986-1993. https://doi.org/10.1093/ndt/gfm011
- Park SC, Yoon YD, Jung HY, et al. Effect of transient post-transplantation hyperglycemia on the development of diabetes mellitus and transplantation outcomes in kidney transplant recipients. Transplant Proc 2015;47:666-671. https://doi.org/10.1016/j.transproceed.2014.11.053
- Kasiske BL, Snyder JJ, Gilbertson D, Matas AJ. Diabetes mellitus after kidney transplantation in the United States. Am J Transplant 2003;3:178-185. https://doi.org/10.1034/j.1600-6143.2003.00010.x
- Rodrigo E, Fernandez-Fresnedo G, Valero R, et al. New-onset diabetes after kidney transplantation: risk factors. J Am Soc Nephrol 2006;17(12 Suppl 3):S291-S295. https://doi.org/10.1681/ASN.2006080929
- Chakkera HA, Weil EJ, Swanson CM, et al. Pretransplant risk score for new-onset diabetes after kidney transplantation. Diabetes Care 2011;34:2141-2145. https://doi.org/10.2337/dc11-0752
- de Mattos AM, Olyaei AJ, Prather JC, Golconda MS, Barry JM, Norman DJ. Autosomal-dominant polycystic kidney disease as a risk factor for diabetes mellitus following renal transplantation. Kidney Int 2005;67:714-720. https://doi.org/10.1111/j.1523-1755.2005.67132.x
- Hamer RA, Chow CL, Ong AC, McKane WS. Polycystic kidney disease is a risk factor for new-onset diabetes after transplantation. Transplantation 2007;83:36-40. https://doi.org/10.1097/01.tp.0000248759.37146.3d
- Johnston O, Rose CL, Webster AC, Gill JS. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol 2008;19:1411-1418. https://doi.org/10.1681/ASN.2007111202
- Radu RG, Fujimoto S, Mukai E, et al. Tacrolimus suppresses glucose-induced insulin release from pancreatic islets by reducing glucokinase activity. Am J Physiol Endocrinol Metab 2005;288:E365-E371. https://doi.org/10.1152/ajpendo.00390.2004
- Israni AK, Snyder JJ, Skeans MA, Kasiske BL; PORT Investigators. Clinical diagnosis of metabolic syndrome: predicting new-onset diabetes, coronary heart disease, and allograft failure late after kidney transplant. Transpl Int 2012;25:748-757. https://doi.org/10.1111/j.1432-2277.2012.01488.x
- Mehta SH, Brancati FL, Sulkowski MS, Strathdee SA, Szklo M, Thomas DL. Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States. Ann Intern Med 2000;133:592-599. https://doi.org/10.7326/0003-4819-133-8-200010170-00009
- Fabrizi F, Martin P, Dixit V, Bunnapradist S, Kanwal F, Dulai G. Post-transplant diabetes mellitus and HCV seropositive status after renal transplantation: meta-analysis of clinical studies. Am J Transplant 2005;5:2433-2440. https://doi.org/10.1111/j.1600-6143.2005.01040.x
- Hjelmesaeth J, Sagedal S, Hartmann A, et al. Asymptomatic cytomegalovirus infection is associated with increased risk of new-onset diabetes mellitus and impaired insulin release after renal transplantation. Diabetologia 2004;47:1550-1556. https://doi.org/10.1007/s00125-004-1499-z
- Madziarska K, Weyde W, Krajewska M, et al. The increased risk of post-transplant diabetes mellitus in peritoneal dialysis-treated kidney allograft recipients. Nephrol Dial Transplant 2011;26:1396-1401. https://doi.org/10.1093/ndt/gfq568
- Davidson JA, Wilkinson A; International Expert Panel on New-Onset Diabetes after Transplantation. New-Onset Diabetes after Transplantation 2003 International Consensus Guidelines: an endocrinologist's view. Diabetes Care 2004;27:805-812. https://doi.org/10.2337/diacare.27.3.805
- Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant 2009;9 Suppl 3:S1-S155.
- Lipshutz GS, Wilkinson AH. Pancreas-kidney and pancreas transplantation for the treatment of diabetes mellitus. Endocrinol Metab Clin North Am 2007;36:1015-1038. https://doi.org/10.1016/j.ecl.2007.07.010
- Glorie LL, Verhulst A, Matheeussen V, et al. DPP4 inhibition improves functional outcome after renal ischemia- reperfusion injury. Am J Physiol Renal Physiol 2012;303:F681-F688. https://doi.org/10.1152/ajprenal.00075.2012
- Joo KW, Kim S, Ahn SY, et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in rat remnant kidney. BMC Nephrol 2013;14:98. https://doi.org/10.1186/1471-2369-14-98
- Katagiri D, Hamasaki Y, Doi K, et al. Protection of glucagon- like peptide-1 in cisplatin-induced renal injury elucidates gut-kidney connection. J Am Soc Nephrol 2013;24:2034-2043. https://doi.org/10.1681/ASN.2013020134
- Park CW, Kim HW, Ko SH, et al. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J Am Soc Nephrol 2007;18:1227-1238. https://doi.org/10.1681/ASN.2006070778
- Mu J, Petrov A, Eiermann GJ, et al. Inhibition of DPP-4 with sitagliptin improves glycemic control and restores islet cell mass and function in a rodent model of type 2 diabetes. Eur J Pharmacol 2009;623:148-154. https://doi.org/10.1016/j.ejphar.2009.09.027
- Shirakawa J, Fujii H, Ohnuma K, et al. Diet-induced adipose tissue inflammation and liver steatosis are prevented by DPP-4 inhibition in diabetic mice. Diabetes 2011;60:1246-1257. https://doi.org/10.2337/db10-1338
- Shah Z, Kampfrath T, Deiuliis JA, et al. Long-term dipeptidyl- peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 2011;124:2338-2349. https://doi.org/10.1161/CIRCULATIONAHA.111.041418
- Ta NN, Schuyler CA, Li Y, Lopes-Virella MF, Huang Y. DPP-4 (CD26) inhibitor alogliptin inhibits atherosclerosis in diabetic apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 2011;58:157-166. https://doi.org/10.1097/FJC.0b013e31821e5626
- Jin L, Lim SW, Doh KC, et al. Dipeptidyl peptidase IV inhibitor MK-0626 attenuates pancreatic islet injury in tacrolimus- induced diabetic rats. PLoS One 2014;9:e100798. https://doi.org/10.1371/journal.pone.0100798
- Lim SW, Jin L, Piao SG, Chung BH, Yang CW. Inhibition of dipeptidyl peptidase IV protects tacrolimus-induced kidney injury. Lab Invest 2015;95:1174-1185. https://doi.org/10.1038/labinvest.2015.93
- Hopsu-Havu VK, Glenner GG. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 1966;7:197-201. https://doi.org/10.1007/BF00577838
- Lambeir AM, Durinx C, Scharpe S, De Meester I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 2003;40:209-294. https://doi.org/10.1080/713609354
- Rohrborn D, Wronkowitz N, Eckel J. DPP4 in diabetes. Front Immunol 2015;6:386.
- Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev 2014;35:992-1019. https://doi.org/10.1210/er.2014-1035
- Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 2013;17:819-837. https://doi.org/10.1016/j.cmet.2013.04.008
- Zhong J, Rao X, Rajagopalan S. An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis 2013;226:305-314. https://doi.org/10.1016/j.atherosclerosis.2012.09.012
- Yu DM, Slaitini L, Gysbers V, et al. Soluble CD26 / dipeptidyl peptidase IV enhances human lymphocyte proliferation in vitro independent of dipeptidyl peptidase enzyme activity and adenosine deaminase binding. Scand J Immunol 2011;73:102-111. https://doi.org/10.1111/j.1365-3083.2010.02488.x
- Knudsen LB, Pridal L. Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur J Pharmacol 1996;318:429-435. https://doi.org/10.1016/S0014-2999(96)00795-9
- Herman GA, Stevens C, Van Dyck K, et al. Pharmacokinetics and pharmacodynamics of sitagliptin, an inhibitor of dipeptidyl peptidase IV, in healthy subjects: results from two randomized, double-blind, placebo-controlled studies with single oral doses. Clin Pharmacol Ther 2005;78:675-688. https://doi.org/10.1016/j.clpt.2005.09.002
- Kim D, Wang L, Beconi M, et al. (2R)-4-oxo-4-[3-(trifluoromethyl)- 5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)- yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 2005;48:141-151. https://doi.org/10.1021/jm0493156
- Lankas GR, Leiting B, Roy RS, et al. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes 2005;54:2988-2994. https://doi.org/10.2337/diabetes.54.10.2988
- Bergman AJ, Cote J, Yi B, et al. Effect of renal insufficiency on the pharmacokinetics of sitagliptin, a dipeptidyl peptidase-4 inhibitor. Diabetes Care 2007;30:1862-1864. https://doi.org/10.2337/dc06-2545
- Bosi E, Camisasca RP, Collober C, Rochotte E, Garber AJ. Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Care 2007;30:890-895. https://doi.org/10.2337/dc06-1732
- He YL, Sabo R, Campestrini J, et al. The influence of hepatic impairment on the pharmacokinetics of the dipeptidyl peptidase IV (DPP-4) inhibitor vildagliptin. Eur J Clin Pharmacol 2007;63:677-686. https://doi.org/10.1007/s00228-007-0312-6
- Boulton DW, Li L, Frevert EU, et al. Influence of renal or hepatic impairment on the pharmacokinetics of saxagliptin. Clin Pharmacokinet 2011;50:253-265. https://doi.org/10.2165/11584350-000000000-00000
- Retlich S, Withopf B, Greischel A, Staab A, Jaehde U, Fuchs H. Binding to dipeptidyl peptidase-4 determines the disposition of linagliptin (BI 1356): investigations in DPP-4 deficient and wildtype rats. Biopharm Drug Dispos 2009;30:422-436. https://doi.org/10.1002/bdd.676
- Fuchs H, Tillement JP, Urien S, Greischel A, Roth W. Concentration-dependent plasma protein binding of the novel dipeptidyl peptidase 4 inhibitor BI 1356 due to saturable binding to its target in plasma of mice, rats and humans. J Pharm Pharmacol 2009;61:55-62. https://doi.org/10.1211/jpp.61.01.0008
- Heise T, Graefe-Mody EU, Huttner S, Ring A, Trommeshauser D, Dugi KA. Pharmacokinetics, pharmacodynamics and tolerability of multiple oral doses of linagliptin, a dipeptidyl peptidase-4 inhibitor in male type 2 diabetes patients. Diabetes Obes Metab 2009;11:786-794. https://doi.org/10.1111/j.1463-1326.2009.01046.x
- Graefe-Mody EU, Padula S, Ring A, Withopf B, Dugi KA. Evaluation of the potential for steady-state pharmacokinetic and pharmacodynamic interactions between the DPP-4 inhibitor linagliptin and metformin in healthy subjects. Curr Med Res Opin 2009;25:1963-1972. https://doi.org/10.1185/03007990903094361
- Lee B, Shi L, Kassel DB, Asakawa T, Takeuchi K, Christopher RJ. Pharmacokinetic, pharmacodynamic, and efficacy profiles of alogliptin, a novel inhibitor of dipeptidyl peptidase-4, in rats, dogs, and monkeys. Eur J Pharmacol 2008;589:306-314. https://doi.org/10.1016/j.ejphar.2008.04.047
- Christopher R, Covington P, Davenport M, et al. Pharmacokinetics, pharmacodynamics, and tolerability of single increasing doses of the dipeptidyl peptidase-4 inhibitor alogliptin in healthy male subjects. Clin Ther 2008;30:513-527. https://doi.org/10.1016/j.clinthera.2008.03.005
- Covington P, Christopher R, Davenport M, et al. Pharmacokinetic, pharmacodynamic, and tolerability profiles of the dipeptidyl peptidase-4 inhibitor alogliptin: a randomized, double-blind, placebo-controlled, multiple-dose study in adult patients with type 2 diabetes. Clin Ther 2008;30:499-512. https://doi.org/10.1016/j.clinthera.2008.03.004
- Ommen ES, Xu L, O'Neill EA, Goldstein BJ, Kaufman KD, Engel SS. Comparison of treatment with sitagliptin or sulfonylurea in patients with type 2 diabetes mellitus and mild renal impairment: a post hoc analysis of clinical trials. Diabetes Ther 2015;6:29-40. https://doi.org/10.1007/s13300-015-0098-y
- Avogaro A, Fadini GP. The effects of dipeptidyl peptidase- 4 inhibition on microvascular diabetes complications. Diabetes Care 2014;37:2884-2894. https://doi.org/10.2337/dc14-0865
- Nabeno M, Akahoshi F, Kishida H, et al. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem Biophys Res Commun 2013;434:191-196. https://doi.org/10.1016/j.bbrc.2013.03.010
- Fura A, Khanna A, Vyas V, et al. Pharmacokinetics of the dipeptidyl peptidase 4 inhibitor saxagliptin in rats, dogs, and monkeys and clinical projections. Drug Metab Dispos 2009;37:1164-1171. https://doi.org/10.1124/dmd.108.026088
- Huttner S, Graefe-Mody EU, Withopf B, Ring A, Dugi KA. Safety, tolerability, pharmacokinetics, and pharmacodynamics of single oral doses of BI 1356, an inhibitor of dipeptidyl peptidase 4, in healthy male volunteers. J Clin Pharmacol 2008;48:1171-1178. https://doi.org/10.1177/0091270008323753
- Thomas L, Eckhardt M, Langkopf E, Tadayyon M, Himmelsbach F, Mark M. (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor, has a superior potency and longer duration of action compared with other dipeptidyl peptidase-4 inhibitors. J Pharmacol Exp Ther 2008;325:175-182. https://doi.org/10.1124/jpet.107.135723
- Strom Halden TA, Asberg A, Vik K, Hartmann A, Jenssen T. Short-term efficacy and safety of sitagliptin treatment in long-term stable renal recipients with new-onset diabetes after transplantation. Nephrol Dial Transplant 2014;29:926-933. https://doi.org/10.1093/ndt/gft536
- Haidinger M, Werzowa J, Hecking M, et al. Efficacy and safety of vildagliptin in new-onset diabetes after kidney transplantation: a randomized, double-blind, placebo- controlled trial. Am J Transplant 2014;14:115-123. https://doi.org/10.1111/ajt.12518
- Boerner BP, Miles CD, Shivaswamy V. Efficacy and safety of sitagliptin for the treatment of new-onset diabetes after renal transplantation. Int J Endocrinol 2014;2014:617638.
- Werzowa J, Hecking M, Haidinger M, et al. Vildagliptin and pioglitazone in patients with impaired glucose tolerance after kidney transplantation: a randomized, placebo-controlled clinical trial. Transplantation 2013;95:456-462. https://doi.org/10.1097/TP.0b013e318276a20e
- Haidinger M, Werzowa J, Voigt HC, et al. A randomized, placebo-controlled, double-blind, prospective trial to evaluate the effect of vildagliptin in new-onset diabetes mellitus after kidney transplantation. Trials 2010;11:91. https://doi.org/10.1186/1745-6215-11-91
- Ogawa S, Ishiki M, Nako K, et al. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, decreases systolic blood pressure in Japanese hypertensive patients with type 2 diabetes. Tohoku J Exp Med 2011;223:133-135. https://doi.org/10.1620/tjem.223.133
- Mistry GC, Maes AL, Lasseter KC, et al. Effect of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on blood pressure in nondiabetic patients with mild to moderate hypertension. J Clin Pharmacol 2008;48:592-598. https://doi.org/10.1177/0091270008316885
- Ferreira L, Teixeira-de-Lemos E, Pinto F, et al. Effects of sitagliptin treatment on dysmetabolism, inflammation, and oxidative stress in an animal model of type 2 diabetes (ZDF rat). Mediators Inflamm 2010;2010:592760.
- Pacheco BP, Crajoinas RO, Couto GK, et al. Dipeptidyl peptidase IV inhibition attenuates blood pressure rising in young spontaneously hypertensive rats. J Hypertens 2011;29:520-528. https://doi.org/10.1097/HJH.0b013e328341939d
- Berglund MM, Hipskind PA, Gehlert DR. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med (Maywood) 2003;228:217-244. https://doi.org/10.1177/153537020322800301
- Mentlein R, Dahms P, Grandt D, Kruger R. Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV. Regul Pept 1993;49:133-144. https://doi.org/10.1016/0167-0115(93)90435-B
- Ta NN, Li Y, Schuyler CA, Lopes-Virella MF, Huang Y. DPP-4 (CD26) inhibitor alogliptin inhibits TLR4-mediated ERK activation and ERK-dependent MMP-1 expression by U937 histiocytes. Atherosclerosis 2010;213:429-435. https://doi.org/10.1016/j.atherosclerosis.2010.08.064
- Matsubara J, Sugiyama S, Sugamura K, et al. A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. J Am Coll Cardiol 2012;59:265-276. https://doi.org/10.1016/j.jacc.2011.07.053
- Wang Y, Landheer S, van Gilst WH, et al. Attenuation of renovascular damage in Zucker diabetic fatty rat by NWT03, an egg protein hydrolysate with ACE- and DPP4-inhibitory Activity. PLoS One 2012;7:e46781. https://doi.org/10.1371/journal.pone.0046781
- Schurmann C, Linke A, Engelmann-Pilger K, et al. The dipeptidyl peptidase-4 inhibitor linagliptin attenuates inflammation and accelerates epithelialization in wounds of diabetic ob/ob mice. J Pharmacol Exp Ther 2012;342:71-80. https://doi.org/10.1124/jpet.111.191098
- Matsubara J, Sugiyama S, Akiyama E, et al. Dipeptidyl peptidase-4 inhibitor, sitagliptin, improves endothelial dysfunction in association with its anti-inflammatory effects in patients with coronary artery disease and uncontrolled diabetes. Circ J 2013;77:1337-1344. https://doi.org/10.1253/circj.CJ-12-1168
- Ortiz A, Lorz C, Catalan MP, Justo P, Egido J. Role and regulation of apoptotic cell death in the kidney: Y2K update. Front Biosci 2000;5:D735-D749. https://doi.org/10.2741/Ortiz
- Arya A, Jamil Al-Obaidi MM, Binti Karim R, et al. Extract of Woodfordia fruticosa flowers ameliorates hyperglycaemia and oxidative stress, and improves beta-cell function in streptozotocin-nicotinamide induced diabetic rat. J Ethnopharmacol 2015;175:229-240. https://doi.org/10.1016/j.jep.2015.08.057
- Xiang Y, Piao SG, Zou HB, et al. L-carnitine protects against cyclosporine-induced pancreatic and renal injury in rats. Transplant Proc 2013;45:3127-3134. https://doi.org/10.1016/j.transproceed.2013.08.041
- Han SW, Li C, Ahn KO, et al. Prolonged endoplasmic reticulum stress induces apoptotic cell death in an experimental model of chronic cyclosporine nephropathy. Am J Nephrol 2008;28:707-714. https://doi.org/10.1159/000127432
- Lopez-Acosta JF, Villa-Perez P, Fernandez-Diaz CM, et al. Protective effects of epoxypukalide on pancreatic beta- cells and glucose metabolism in STZ-induced diabetic mice. Islets 2015 Sep 25 [Epub]. http://dx.doi.org/10.1080/19382014.2015.1078053.
- Shao C, Gu J, Meng X, Zheng H, Wang D. Systematic investigation into the role of intermittent high glucose in pancreatic beta-cells. Int J Clin Exp Med 2015;8:5462-5469.
- Shimizu S, Hosooka T, Matsuda T, et al. DPP4 inhibitor vildagliptin preserves beta-cell mass through amelioration of endoplasmic reticulum stress in C/EBPB transgenic mice. J Mol Endocrinol 2012;49:125-135. https://doi.org/10.1530/JME-12-0039
- Ihara M, Asanuma H, Yamazaki S, et al. An interaction between glucagon-like peptide-1 and adenosine contributes to cardioprotection of a dipeptidyl peptidase 4 inhibitor from myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2015;308:H1287-H1297. https://doi.org/10.1152/ajpheart.00835.2014
- Chang G, Zhang P, Ye L, et al. Protective effects of sitagliptin on myocardial injury and cardiac function in an ischemia/reperfusion rat model. Eur J Pharmacol 2013;718:105-113. https://doi.org/10.1016/j.ejphar.2013.09.007
- Price JD, Linder G, Li WP, et al. Effects of short-term sitagliptin treatment on immune parameters in healthy individuals, a randomized placebo-controlled study. Clin Exp Immunol 2013;174:120-128. https://doi.org/10.1111/cei.12144
- White PC, Chamberlain-Shea H, de la Morena MT. Sitagliptin treatment of patients with type 2 diabetes does not affect CD4+ T-cell activation. J Diabetes Complications 2010;24:209-213. https://doi.org/10.1016/j.jdiacomp.2009.09.001
- Anz D, Kruger S, Haubner S, Rapp M, Bourquin C, Endres S. The dipeptidylpeptidase-IV inhibitors sitagliptin, vildagliptin and saxagliptin do not impair innate and adaptive immune responses. Diabetes Obes Metab 2014;16:569-572. https://doi.org/10.1111/dom.12246
- Kim SJ, Nian C, Doudet DJ, McIntosh CH. Dipeptidyl peptidase IV inhibition with MK0431 improves islet graft survival in diabetic NOD mice partially via T-cell modulation. Diabetes 2009;58:641-651. https://doi.org/10.2337/db08-1101
- Jelsing J, Vrang N, van Witteloostuijn SB, Mark M, Klein T. The DPP4 inhibitor linagliptin delays the onset of diabetes and preserves beta-cell mass in non-obese diabetic mice. J Endocrinol 2012;214:381-387. https://doi.org/10.1530/JOE-11-0479
- Cho JM, Jang HW, Cheon H, et al. A novel dipeptidyl peptidase IV inhibitor DA-1229 ameliorates streptozotocin- induced diabetes by increasing beta-cell replication and neogenesis. Diabetes Res Clin Pract 2011;91:72-79. https://doi.org/10.1016/j.diabres.2010.10.012
Cited by
- Cardiovascular risk after orthotopic liver transplantation, a review of the literature and preliminary results of a prospective study vol.22, pp.40, 2015, https://doi.org/10.3748/wjg.v22.i40.8869
- Effects of metformin on hyperglycemia in an experimental model of tacrolimus- and sirolimus-induced diabetic rats vol.32, pp.2, 2015, https://doi.org/10.3904/kjim.2015.394
- Shen-Kang protects against tacrolimus-induced renal injury vol.34, pp.5, 2015, https://doi.org/10.3904/kjim.2017.276