DOI QR코드

DOI QR Code

Role of dipeptidyl peptidase-4 inhibitors in new-onset diabetes after transplantation

  • Lim, Sun Woo (Transplant Research Center, College of Medicine, The Catholic University of Korea) ;
  • Jin, Ji Zhe (Division of Nephrology, Department of Internal Medicine, Yanbian University Hospital) ;
  • Jin, Long (Transplant Research Center, College of Medicine, The Catholic University of Korea) ;
  • Jin, Jian (Transplant Research Center, College of Medicine, The Catholic University of Korea) ;
  • Li, Can (Division of Nephrology, Department of Internal Medicine, Yanbian University Hospital)
  • Received : 2015.10.06
  • Accepted : 2015.10.14
  • Published : 2015.11.01

Abstract

Despite strict pre- and post-transplantation screening, the incidence of new-onset diabetes after transplantation (NODAT) remains as high as 60%. This complication affects the risk of cardiovascular events and patient and graft survival rates. Thus, reducing the impact of NODAT could improve overall transplant success. The pathogenesis of NODAT is multifactorial, and both modifiable and nonmodifiable risk factors have been implicated. Monitoring and controlling the blood glucose profile, implementing multidisciplinary care, performing lifestyle modifications, using a modified immunosuppressive regimen, administering anti-metabolite agents, and taking a conventional antidiabetic approach may diminish the incidence of NODAT. In addition to these preventive strategies, inhibition of dipeptidyl peptidase-4 ($DPP_4$) by the gliptin family of drugs has recently gained considerable interest as therapy for type 2 diabetes mellitus and NODAT. This review focuses on the role of $DPP_4$ inhibitors and discusses recent literature regarding management of NODAT.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Einollahi B, Motalebi M, Salesi M, Ebrahimi M, Taghipour M. The impact of cytomegalovirus infection on new-onset diabetes mellitus after kidney transplantation: a review on current findings. J Nephropathol 2014;3:139-148.
  2. Palepu S, Prasad GV. New-onset diabetes mellitus after kidney transplantation: current status and future directions. World J Diabetes 2015;6:445-455. https://doi.org/10.4239/wjd.v6.i3.445
  3. Pham PT, Pham PM, Pham SV, Pham PA, Pham PC. New onset diabetes after transplantation (NODAT): an overview. Diabetes Metab Syndr Obes 2011;4:175-186.
  4. Park CW. Does nondiabetic renal disease exacerbate diabetic nephropathy in patients with type 2 diabetes? Korean J Intern Med 2013;28:544-546. https://doi.org/10.3904/kjim.2013.28.5.544
  5. Baid S, Cosimi AB, Farrell ML, et al. Posttransplant diabetes mellitus in liver transplant recipients: risk factors, temporal relationship with hepatitis C virus allograft hepatitis, and impact on mortality. Transplantation 2001;72:1066-1072. https://doi.org/10.1097/00007890-200109270-00015
  6. Bigam DL, Pennington JJ, Carpentier A, et al. Hepatitis C-related cirrhosis: a predictor of diabetes after liver transplantation. Hepatology 2000;32:87-90.
  7. Davidson J, Wilkinson A, Dantal J, et al. New-onset diabetes after transplantation: 2003 International consensus guidelines. Proceedings of an International Expert Panel Meeting. Barcelona, Spain, 19 February 2003. Transplantation 2003;75(10 Suppl):SS3-SS24.
  8. Hackman KL, Snell GI, Bach LA. Prevalence and predictors of diabetes after lung transplantation: a prospective, longitudinal study. Diabetes Care 2014;37:2919-2925. https://doi.org/10.2337/dc14-0663
  9. Ye X, Kuo HT, Sampaio MS, Jiang Y, Bunnapradist S. Risk factors for development of new-onset diabetes mellitus after transplant in adult lung transplant recipients. Clin Transplant 2011;25:885-891. https://doi.org/10.1111/j.1399-0012.2010.01383.x
  10. Kamar N, Mariat C, Delahousse M, et al. Diabetes mellitus after kidney transplantation: a French multicentre observational study. Nephrol Dial Transplant 2007;22:1986-1993. https://doi.org/10.1093/ndt/gfm011
  11. Park SC, Yoon YD, Jung HY, et al. Effect of transient post-transplantation hyperglycemia on the development of diabetes mellitus and transplantation outcomes in kidney transplant recipients. Transplant Proc 2015;47:666-671. https://doi.org/10.1016/j.transproceed.2014.11.053
  12. Kasiske BL, Snyder JJ, Gilbertson D, Matas AJ. Diabetes mellitus after kidney transplantation in the United States. Am J Transplant 2003;3:178-185. https://doi.org/10.1034/j.1600-6143.2003.00010.x
  13. Rodrigo E, Fernandez-Fresnedo G, Valero R, et al. New-onset diabetes after kidney transplantation: risk factors. J Am Soc Nephrol 2006;17(12 Suppl 3):S291-S295. https://doi.org/10.1681/ASN.2006080929
  14. Chakkera HA, Weil EJ, Swanson CM, et al. Pretransplant risk score for new-onset diabetes after kidney transplantation. Diabetes Care 2011;34:2141-2145. https://doi.org/10.2337/dc11-0752
  15. de Mattos AM, Olyaei AJ, Prather JC, Golconda MS, Barry JM, Norman DJ. Autosomal-dominant polycystic kidney disease as a risk factor for diabetes mellitus following renal transplantation. Kidney Int 2005;67:714-720. https://doi.org/10.1111/j.1523-1755.2005.67132.x
  16. Hamer RA, Chow CL, Ong AC, McKane WS. Polycystic kidney disease is a risk factor for new-onset diabetes after transplantation. Transplantation 2007;83:36-40. https://doi.org/10.1097/01.tp.0000248759.37146.3d
  17. Johnston O, Rose CL, Webster AC, Gill JS. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol 2008;19:1411-1418. https://doi.org/10.1681/ASN.2007111202
  18. Radu RG, Fujimoto S, Mukai E, et al. Tacrolimus suppresses glucose-induced insulin release from pancreatic islets by reducing glucokinase activity. Am J Physiol Endocrinol Metab 2005;288:E365-E371. https://doi.org/10.1152/ajpendo.00390.2004
  19. Israni AK, Snyder JJ, Skeans MA, Kasiske BL; PORT Investigators. Clinical diagnosis of metabolic syndrome: predicting new-onset diabetes, coronary heart disease, and allograft failure late after kidney transplant. Transpl Int 2012;25:748-757. https://doi.org/10.1111/j.1432-2277.2012.01488.x
  20. Mehta SH, Brancati FL, Sulkowski MS, Strathdee SA, Szklo M, Thomas DL. Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States. Ann Intern Med 2000;133:592-599. https://doi.org/10.7326/0003-4819-133-8-200010170-00009
  21. Fabrizi F, Martin P, Dixit V, Bunnapradist S, Kanwal F, Dulai G. Post-transplant diabetes mellitus and HCV seropositive status after renal transplantation: meta-analysis of clinical studies. Am J Transplant 2005;5:2433-2440. https://doi.org/10.1111/j.1600-6143.2005.01040.x
  22. Hjelmesaeth J, Sagedal S, Hartmann A, et al. Asymptomatic cytomegalovirus infection is associated with increased risk of new-onset diabetes mellitus and impaired insulin release after renal transplantation. Diabetologia 2004;47:1550-1556. https://doi.org/10.1007/s00125-004-1499-z
  23. Madziarska K, Weyde W, Krajewska M, et al. The increased risk of post-transplant diabetes mellitus in peritoneal dialysis-treated kidney allograft recipients. Nephrol Dial Transplant 2011;26:1396-1401. https://doi.org/10.1093/ndt/gfq568
  24. Davidson JA, Wilkinson A; International Expert Panel on New-Onset Diabetes after Transplantation. New-Onset Diabetes after Transplantation 2003 International Consensus Guidelines: an endocrinologist's view. Diabetes Care 2004;27:805-812. https://doi.org/10.2337/diacare.27.3.805
  25. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant 2009;9 Suppl 3:S1-S155.
  26. Lipshutz GS, Wilkinson AH. Pancreas-kidney and pancreas transplantation for the treatment of diabetes mellitus. Endocrinol Metab Clin North Am 2007;36:1015-1038. https://doi.org/10.1016/j.ecl.2007.07.010
  27. Glorie LL, Verhulst A, Matheeussen V, et al. DPP4 inhibition improves functional outcome after renal ischemia- reperfusion injury. Am J Physiol Renal Physiol 2012;303:F681-F688. https://doi.org/10.1152/ajprenal.00075.2012
  28. Joo KW, Kim S, Ahn SY, et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in rat remnant kidney. BMC Nephrol 2013;14:98. https://doi.org/10.1186/1471-2369-14-98
  29. Katagiri D, Hamasaki Y, Doi K, et al. Protection of glucagon- like peptide-1 in cisplatin-induced renal injury elucidates gut-kidney connection. J Am Soc Nephrol 2013;24:2034-2043. https://doi.org/10.1681/ASN.2013020134
  30. Park CW, Kim HW, Ko SH, et al. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J Am Soc Nephrol 2007;18:1227-1238. https://doi.org/10.1681/ASN.2006070778
  31. Mu J, Petrov A, Eiermann GJ, et al. Inhibition of DPP-4 with sitagliptin improves glycemic control and restores islet cell mass and function in a rodent model of type 2 diabetes. Eur J Pharmacol 2009;623:148-154. https://doi.org/10.1016/j.ejphar.2009.09.027
  32. Shirakawa J, Fujii H, Ohnuma K, et al. Diet-induced adipose tissue inflammation and liver steatosis are prevented by DPP-4 inhibition in diabetic mice. Diabetes 2011;60:1246-1257. https://doi.org/10.2337/db10-1338
  33. Shah Z, Kampfrath T, Deiuliis JA, et al. Long-term dipeptidyl- peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 2011;124:2338-2349. https://doi.org/10.1161/CIRCULATIONAHA.111.041418
  34. Ta NN, Schuyler CA, Li Y, Lopes-Virella MF, Huang Y. DPP-4 (CD26) inhibitor alogliptin inhibits atherosclerosis in diabetic apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 2011;58:157-166. https://doi.org/10.1097/FJC.0b013e31821e5626
  35. Jin L, Lim SW, Doh KC, et al. Dipeptidyl peptidase IV inhibitor MK-0626 attenuates pancreatic islet injury in tacrolimus- induced diabetic rats. PLoS One 2014;9:e100798. https://doi.org/10.1371/journal.pone.0100798
  36. Lim SW, Jin L, Piao SG, Chung BH, Yang CW. Inhibition of dipeptidyl peptidase IV protects tacrolimus-induced kidney injury. Lab Invest 2015;95:1174-1185. https://doi.org/10.1038/labinvest.2015.93
  37. Hopsu-Havu VK, Glenner GG. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 1966;7:197-201. https://doi.org/10.1007/BF00577838
  38. Lambeir AM, Durinx C, Scharpe S, De Meester I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 2003;40:209-294. https://doi.org/10.1080/713609354
  39. Rohrborn D, Wronkowitz N, Eckel J. DPP4 in diabetes. Front Immunol 2015;6:386.
  40. Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev 2014;35:992-1019. https://doi.org/10.1210/er.2014-1035
  41. Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 2013;17:819-837. https://doi.org/10.1016/j.cmet.2013.04.008
  42. Zhong J, Rao X, Rajagopalan S. An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis 2013;226:305-314. https://doi.org/10.1016/j.atherosclerosis.2012.09.012
  43. Yu DM, Slaitini L, Gysbers V, et al. Soluble CD26 / dipeptidyl peptidase IV enhances human lymphocyte proliferation in vitro independent of dipeptidyl peptidase enzyme activity and adenosine deaminase binding. Scand J Immunol 2011;73:102-111. https://doi.org/10.1111/j.1365-3083.2010.02488.x
  44. Knudsen LB, Pridal L. Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur J Pharmacol 1996;318:429-435. https://doi.org/10.1016/S0014-2999(96)00795-9
  45. Herman GA, Stevens C, Van Dyck K, et al. Pharmacokinetics and pharmacodynamics of sitagliptin, an inhibitor of dipeptidyl peptidase IV, in healthy subjects: results from two randomized, double-blind, placebo-controlled studies with single oral doses. Clin Pharmacol Ther 2005;78:675-688. https://doi.org/10.1016/j.clpt.2005.09.002
  46. Kim D, Wang L, Beconi M, et al. (2R)-4-oxo-4-[3-(trifluoromethyl)- 5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)- yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 2005;48:141-151. https://doi.org/10.1021/jm0493156
  47. Lankas GR, Leiting B, Roy RS, et al. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes 2005;54:2988-2994. https://doi.org/10.2337/diabetes.54.10.2988
  48. Bergman AJ, Cote J, Yi B, et al. Effect of renal insufficiency on the pharmacokinetics of sitagliptin, a dipeptidyl peptidase-4 inhibitor. Diabetes Care 2007;30:1862-1864. https://doi.org/10.2337/dc06-2545
  49. Bosi E, Camisasca RP, Collober C, Rochotte E, Garber AJ. Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Care 2007;30:890-895. https://doi.org/10.2337/dc06-1732
  50. He YL, Sabo R, Campestrini J, et al. The influence of hepatic impairment on the pharmacokinetics of the dipeptidyl peptidase IV (DPP-4) inhibitor vildagliptin. Eur J Clin Pharmacol 2007;63:677-686. https://doi.org/10.1007/s00228-007-0312-6
  51. Boulton DW, Li L, Frevert EU, et al. Influence of renal or hepatic impairment on the pharmacokinetics of saxagliptin. Clin Pharmacokinet 2011;50:253-265. https://doi.org/10.2165/11584350-000000000-00000
  52. Retlich S, Withopf B, Greischel A, Staab A, Jaehde U, Fuchs H. Binding to dipeptidyl peptidase-4 determines the disposition of linagliptin (BI 1356): investigations in DPP-4 deficient and wildtype rats. Biopharm Drug Dispos 2009;30:422-436. https://doi.org/10.1002/bdd.676
  53. Fuchs H, Tillement JP, Urien S, Greischel A, Roth W. Concentration-dependent plasma protein binding of the novel dipeptidyl peptidase 4 inhibitor BI 1356 due to saturable binding to its target in plasma of mice, rats and humans. J Pharm Pharmacol 2009;61:55-62. https://doi.org/10.1211/jpp.61.01.0008
  54. Heise T, Graefe-Mody EU, Huttner S, Ring A, Trommeshauser D, Dugi KA. Pharmacokinetics, pharmacodynamics and tolerability of multiple oral doses of linagliptin, a dipeptidyl peptidase-4 inhibitor in male type 2 diabetes patients. Diabetes Obes Metab 2009;11:786-794. https://doi.org/10.1111/j.1463-1326.2009.01046.x
  55. Graefe-Mody EU, Padula S, Ring A, Withopf B, Dugi KA. Evaluation of the potential for steady-state pharmacokinetic and pharmacodynamic interactions between the DPP-4 inhibitor linagliptin and metformin in healthy subjects. Curr Med Res Opin 2009;25:1963-1972. https://doi.org/10.1185/03007990903094361
  56. Lee B, Shi L, Kassel DB, Asakawa T, Takeuchi K, Christopher RJ. Pharmacokinetic, pharmacodynamic, and efficacy profiles of alogliptin, a novel inhibitor of dipeptidyl peptidase-4, in rats, dogs, and monkeys. Eur J Pharmacol 2008;589:306-314. https://doi.org/10.1016/j.ejphar.2008.04.047
  57. Christopher R, Covington P, Davenport M, et al. Pharmacokinetics, pharmacodynamics, and tolerability of single increasing doses of the dipeptidyl peptidase-4 inhibitor alogliptin in healthy male subjects. Clin Ther 2008;30:513-527. https://doi.org/10.1016/j.clinthera.2008.03.005
  58. Covington P, Christopher R, Davenport M, et al. Pharmacokinetic, pharmacodynamic, and tolerability profiles of the dipeptidyl peptidase-4 inhibitor alogliptin: a randomized, double-blind, placebo-controlled, multiple-dose study in adult patients with type 2 diabetes. Clin Ther 2008;30:499-512. https://doi.org/10.1016/j.clinthera.2008.03.004
  59. Ommen ES, Xu L, O'Neill EA, Goldstein BJ, Kaufman KD, Engel SS. Comparison of treatment with sitagliptin or sulfonylurea in patients with type 2 diabetes mellitus and mild renal impairment: a post hoc analysis of clinical trials. Diabetes Ther 2015;6:29-40. https://doi.org/10.1007/s13300-015-0098-y
  60. Avogaro A, Fadini GP. The effects of dipeptidyl peptidase- 4 inhibition on microvascular diabetes complications. Diabetes Care 2014;37:2884-2894. https://doi.org/10.2337/dc14-0865
  61. Nabeno M, Akahoshi F, Kishida H, et al. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem Biophys Res Commun 2013;434:191-196. https://doi.org/10.1016/j.bbrc.2013.03.010
  62. Fura A, Khanna A, Vyas V, et al. Pharmacokinetics of the dipeptidyl peptidase 4 inhibitor saxagliptin in rats, dogs, and monkeys and clinical projections. Drug Metab Dispos 2009;37:1164-1171. https://doi.org/10.1124/dmd.108.026088
  63. Huttner S, Graefe-Mody EU, Withopf B, Ring A, Dugi KA. Safety, tolerability, pharmacokinetics, and pharmacodynamics of single oral doses of BI 1356, an inhibitor of dipeptidyl peptidase 4, in healthy male volunteers. J Clin Pharmacol 2008;48:1171-1178. https://doi.org/10.1177/0091270008323753
  64. Thomas L, Eckhardt M, Langkopf E, Tadayyon M, Himmelsbach F, Mark M. (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor, has a superior potency and longer duration of action compared with other dipeptidyl peptidase-4 inhibitors. J Pharmacol Exp Ther 2008;325:175-182. https://doi.org/10.1124/jpet.107.135723
  65. Strom Halden TA, Asberg A, Vik K, Hartmann A, Jenssen T. Short-term efficacy and safety of sitagliptin treatment in long-term stable renal recipients with new-onset diabetes after transplantation. Nephrol Dial Transplant 2014;29:926-933. https://doi.org/10.1093/ndt/gft536
  66. Haidinger M, Werzowa J, Hecking M, et al. Efficacy and safety of vildagliptin in new-onset diabetes after kidney transplantation: a randomized, double-blind, placebo- controlled trial. Am J Transplant 2014;14:115-123. https://doi.org/10.1111/ajt.12518
  67. Boerner BP, Miles CD, Shivaswamy V. Efficacy and safety of sitagliptin for the treatment of new-onset diabetes after renal transplantation. Int J Endocrinol 2014;2014:617638.
  68. Werzowa J, Hecking M, Haidinger M, et al. Vildagliptin and pioglitazone in patients with impaired glucose tolerance after kidney transplantation: a randomized, placebo-controlled clinical trial. Transplantation 2013;95:456-462. https://doi.org/10.1097/TP.0b013e318276a20e
  69. Haidinger M, Werzowa J, Voigt HC, et al. A randomized, placebo-controlled, double-blind, prospective trial to evaluate the effect of vildagliptin in new-onset diabetes mellitus after kidney transplantation. Trials 2010;11:91. https://doi.org/10.1186/1745-6215-11-91
  70. Ogawa S, Ishiki M, Nako K, et al. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, decreases systolic blood pressure in Japanese hypertensive patients with type 2 diabetes. Tohoku J Exp Med 2011;223:133-135. https://doi.org/10.1620/tjem.223.133
  71. Mistry GC, Maes AL, Lasseter KC, et al. Effect of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on blood pressure in nondiabetic patients with mild to moderate hypertension. J Clin Pharmacol 2008;48:592-598. https://doi.org/10.1177/0091270008316885
  72. Ferreira L, Teixeira-de-Lemos E, Pinto F, et al. Effects of sitagliptin treatment on dysmetabolism, inflammation, and oxidative stress in an animal model of type 2 diabetes (ZDF rat). Mediators Inflamm 2010;2010:592760.
  73. Pacheco BP, Crajoinas RO, Couto GK, et al. Dipeptidyl peptidase IV inhibition attenuates blood pressure rising in young spontaneously hypertensive rats. J Hypertens 2011;29:520-528. https://doi.org/10.1097/HJH.0b013e328341939d
  74. Berglund MM, Hipskind PA, Gehlert DR. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med (Maywood) 2003;228:217-244. https://doi.org/10.1177/153537020322800301
  75. Mentlein R, Dahms P, Grandt D, Kruger R. Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV. Regul Pept 1993;49:133-144. https://doi.org/10.1016/0167-0115(93)90435-B
  76. Ta NN, Li Y, Schuyler CA, Lopes-Virella MF, Huang Y. DPP-4 (CD26) inhibitor alogliptin inhibits TLR4-mediated ERK activation and ERK-dependent MMP-1 expression by U937 histiocytes. Atherosclerosis 2010;213:429-435. https://doi.org/10.1016/j.atherosclerosis.2010.08.064
  77. Matsubara J, Sugiyama S, Sugamura K, et al. A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. J Am Coll Cardiol 2012;59:265-276. https://doi.org/10.1016/j.jacc.2011.07.053
  78. Wang Y, Landheer S, van Gilst WH, et al. Attenuation of renovascular damage in Zucker diabetic fatty rat by NWT03, an egg protein hydrolysate with ACE- and DPP4-inhibitory Activity. PLoS One 2012;7:e46781. https://doi.org/10.1371/journal.pone.0046781
  79. Schurmann C, Linke A, Engelmann-Pilger K, et al. The dipeptidyl peptidase-4 inhibitor linagliptin attenuates inflammation and accelerates epithelialization in wounds of diabetic ob/ob mice. J Pharmacol Exp Ther 2012;342:71-80. https://doi.org/10.1124/jpet.111.191098
  80. Matsubara J, Sugiyama S, Akiyama E, et al. Dipeptidyl peptidase-4 inhibitor, sitagliptin, improves endothelial dysfunction in association with its anti-inflammatory effects in patients with coronary artery disease and uncontrolled diabetes. Circ J 2013;77:1337-1344. https://doi.org/10.1253/circj.CJ-12-1168
  81. Ortiz A, Lorz C, Catalan MP, Justo P, Egido J. Role and regulation of apoptotic cell death in the kidney: Y2K update. Front Biosci 2000;5:D735-D749. https://doi.org/10.2741/Ortiz
  82. Arya A, Jamil Al-Obaidi MM, Binti Karim R, et al. Extract of Woodfordia fruticosa flowers ameliorates hyperglycaemia and oxidative stress, and improves beta-cell function in streptozotocin-nicotinamide induced diabetic rat. J Ethnopharmacol 2015;175:229-240. https://doi.org/10.1016/j.jep.2015.08.057
  83. Xiang Y, Piao SG, Zou HB, et al. L-carnitine protects against cyclosporine-induced pancreatic and renal injury in rats. Transplant Proc 2013;45:3127-3134. https://doi.org/10.1016/j.transproceed.2013.08.041
  84. Han SW, Li C, Ahn KO, et al. Prolonged endoplasmic reticulum stress induces apoptotic cell death in an experimental model of chronic cyclosporine nephropathy. Am J Nephrol 2008;28:707-714. https://doi.org/10.1159/000127432
  85. Lopez-Acosta JF, Villa-Perez P, Fernandez-Diaz CM, et al. Protective effects of epoxypukalide on pancreatic beta- cells and glucose metabolism in STZ-induced diabetic mice. Islets 2015 Sep 25 [Epub]. http://dx.doi.org/10.1080/19382014.2015.1078053.
  86. Shao C, Gu J, Meng X, Zheng H, Wang D. Systematic investigation into the role of intermittent high glucose in pancreatic beta-cells. Int J Clin Exp Med 2015;8:5462-5469.
  87. Shimizu S, Hosooka T, Matsuda T, et al. DPP4 inhibitor vildagliptin preserves beta-cell mass through amelioration of endoplasmic reticulum stress in C/EBPB transgenic mice. J Mol Endocrinol 2012;49:125-135. https://doi.org/10.1530/JME-12-0039
  88. Ihara M, Asanuma H, Yamazaki S, et al. An interaction between glucagon-like peptide-1 and adenosine contributes to cardioprotection of a dipeptidyl peptidase 4 inhibitor from myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2015;308:H1287-H1297. https://doi.org/10.1152/ajpheart.00835.2014
  89. Chang G, Zhang P, Ye L, et al. Protective effects of sitagliptin on myocardial injury and cardiac function in an ischemia/reperfusion rat model. Eur J Pharmacol 2013;718:105-113. https://doi.org/10.1016/j.ejphar.2013.09.007
  90. Price JD, Linder G, Li WP, et al. Effects of short-term sitagliptin treatment on immune parameters in healthy individuals, a randomized placebo-controlled study. Clin Exp Immunol 2013;174:120-128. https://doi.org/10.1111/cei.12144
  91. White PC, Chamberlain-Shea H, de la Morena MT. Sitagliptin treatment of patients with type 2 diabetes does not affect CD4+ T-cell activation. J Diabetes Complications 2010;24:209-213. https://doi.org/10.1016/j.jdiacomp.2009.09.001
  92. Anz D, Kruger S, Haubner S, Rapp M, Bourquin C, Endres S. The dipeptidylpeptidase-IV inhibitors sitagliptin, vildagliptin and saxagliptin do not impair innate and adaptive immune responses. Diabetes Obes Metab 2014;16:569-572. https://doi.org/10.1111/dom.12246
  93. Kim SJ, Nian C, Doudet DJ, McIntosh CH. Dipeptidyl peptidase IV inhibition with MK0431 improves islet graft survival in diabetic NOD mice partially via T-cell modulation. Diabetes 2009;58:641-651. https://doi.org/10.2337/db08-1101
  94. Jelsing J, Vrang N, van Witteloostuijn SB, Mark M, Klein T. The DPP4 inhibitor linagliptin delays the onset of diabetes and preserves beta-cell mass in non-obese diabetic mice. J Endocrinol 2012;214:381-387. https://doi.org/10.1530/JOE-11-0479
  95. Cho JM, Jang HW, Cheon H, et al. A novel dipeptidyl peptidase IV inhibitor DA-1229 ameliorates streptozotocin- induced diabetes by increasing beta-cell replication and neogenesis. Diabetes Res Clin Pract 2011;91:72-79. https://doi.org/10.1016/j.diabres.2010.10.012

Cited by

  1. Cardiovascular risk after orthotopic liver transplantation, a review of the literature and preliminary results of a prospective study vol.22, pp.40, 2015, https://doi.org/10.3748/wjg.v22.i40.8869
  2. Effects of metformin on hyperglycemia in an experimental model of tacrolimus- and sirolimus-induced diabetic rats vol.32, pp.2, 2015, https://doi.org/10.3904/kjim.2015.394
  3. Shen-Kang protects against tacrolimus-induced renal injury vol.34, pp.5, 2015, https://doi.org/10.3904/kjim.2017.276