DOI QR코드

DOI QR Code

Ultrastructure of the Digestive Diverticulum of Tegillarca granosa (Bivalvia: Arcidae)

꼬막, Tegillarca granosa 소화맹낭의 미세구조

  • Ju, Sun Mi (Department of Aqualife Medicine, Chonnam National University) ;
  • Jeon, Mi Ae (Department of Aqualife Medicine, Chonnam National University) ;
  • Kim, Hyejin (Department of Aqualife Medicine, Chonnam National University) ;
  • Ku, Kayeon (Department of Aqualife Medicine, Chonnam National University) ;
  • Lee, Jung Sick (Department of Aqualife Medicine, Chonnam National University)
  • 주선미 (전남대학교 수산생명의학과) ;
  • 전미애 (전남대학교 수산생명의학과) ;
  • 김혜진 (전남대학교 수산생명의학과) ;
  • 구가연 (전남대학교 수산생명의학과) ;
  • 이정식 (전남대학교 수산생명의학과)
  • Received : 2015.03.10
  • Accepted : 2015.03.30
  • Published : 2015.03.31

Abstract

The anatomy and ultrastructure of the digestive diverticulum of Tegillarca granosa were described using light and electron microscopy. The digestive diverticulum was situated on the gonad and connected to stomach by a primary duct. Digestive diverticulum is composed of numerous digestive tubules. The epithelial layer of digestive tubule, which is simple, is composed of basophilic cells and digestive cells. Basophilic cells are columnar in shape, and the electron density is higher than that of the digestive cell. The cytoplasm has a well-developed endoplasmic reticulum, tubular mitochondria, Golgi complex and of membrane-bounded granules of high electron density. Digestive cells were classified into three types. According to cell shape, electron density and cell organelles. However, three types of epithelia was same that striated border was observed in free surface and lysosome was observed in cytoplasm. The results of this study suggest that basophilic cells and digestive cells in the digestive tubule are specialized in the extracellular and intracellular digestions, respectively.

꼬막 소화맹낭의 해부학적 구조와 미세구조를 광학 및 전자현미경을 이용하여 기재하였다. 소화맹낭은 생식소 위쪽에 위치하며, 일차소관으로 위와 연결되어 있었다. 소화맹낭은 다수의 소화선세관들로 구성되며, 각각의 소화선세관은 단층 상피층으로 호염기성세포와 소화세포들로 이루어져 있었다. 호염기성세포는 원주형으로 소화세포에 비해 전자밀도가 높았다. 세포질에는 잘 발달된 조면소포체, 관상의 미토콘드리아, 골지체 및 전자밀도가 높고 막을 가진 분비과립들을 함유하고 있었다. 소화세포는 세 가지 종류 (A, B, C) 로 구분 할 수 있었는데 이들 소화세포들은 세포형태, 전자밀도, 세포소기관의 발달 차이를 보였으나 자유면에서 섬모와 미세융모의 발달 및 세포질의 용해소체는 세 가지 상피세포에서 동일하게 관찰되었다. 본 연구에서 이러한 결과는 소화선세관의 호염기성세포와 소화세포는 각각 세포외 소화와 세포내 소화에 적당하게 분화되었음을 의미한다.

Keywords

References

  1. Albentosa, M. and Moyano, F.J. (2009) Differences in the digestive biochemistry between the intertidal clam, Ruditapes decussatus and the subtidal clam, Venerupis pullastra. Aquaculture International, 17: 273-282. https://doi.org/10.1007/s10499-008-9199-1
  2. Alyakrinskaya, I.O. (2001) The dimensions, characteristics and functions of the crystalline style of molluscs. Biological Bulletin, 28: 523-535. https://doi.org/10.1023/A:1016756629952
  3. Bernard, F.R. (1973) Crystalline style formation and function in the oyster Crassostrea gigas (Thunberg, 1795). Ophelia, 12: 159-170. https://doi.org/10.1080/00785326.1973.10430126
  4. Brock, V. (1989) Crassostrea gigas (Thunberg) hepatopancreas-cellulase kinetics and cellulolysis of living monocellular algae with cellulose walls. Journal of Experimental Marine Biology and Ecology, 128: 157-164. https://doi.org/10.1016/0022-0981(89)90143-3
  5. Brock, V. and Kennedy, V.S. (1992) Quantitative analysis of crystalline style carboohydrases in five suspension-and deposit-feeding bivalves. Journal of Experimental Marine Biology and Ecology, 159: 51-58. https://doi.org/10.1016/0022-0981(92)90257-B
  6. Dimitriadis, V.K., Domouhtsidou, G.P. and Cajaraville, M.P. (2004) Cytochemical and histochemical aspects of the digestive gland cells of the mussel Mytilus galloprovincialis (L.) in relation to function. Journal of Molecular Histology, 35: 501-509.
  7. Eble, A.F. (2001) Anatomy and histology of Mercenaria mercenaria. In: Biology of the hard clam. (ed. by Kraeuter, J.N. and Castagna, M.). pp. 117-220. Elsevier, New york.
  8. Fernandez-Reiriz, M.J., Labarta, U., Navarro, J.M. and Velasco, A. (2001) Enzymatic digestive activity in Mytilus chilensis (Hupe 1854) in response to food regimes and past feeding history. Journal of Comparative Physiology, 171: 203-221.
  9. Gosling, E. (2004) Bivalve molluscs: Biology, Ecology and Culture. 2. Morphology of bivalves. pp. 7-39, Blackwell Publishing Ltd., Oxford.
  10. Henry, M., Boucaud-Camou, E. and Lefort, Y. (1991) Functional micro-anatomy of the digestive gland of the scallop Pecten maximus (L.). Aquatic Living Resources, 4: 191-202. https://doi.org/10.1051/alr:1991021
  11. Ibarrola, I., Larretxea, X., Iglesias, J.I.P., Urrutia, M.B. and Navarro, E. (1998) Seasonal variation of digestive enzyme activities in the digestive gland and the crystalline style of the common cockle Cerastoderma edule. Comparative Biochemistry and Physiology, Part A, 121: 25-34. https://doi.org/10.1016/S1095-6433(98)10097-1
  12. Ju, S.M. and Lee, J.S. (2011) Ultrastructure of the digestive diverticulum of Saxidomus purpuratus (Bivalvia: Veneridae). Korean Journal of Malacology, 27(3): 159-165. https://doi.org/10.9710/kjm.2011.27.3.159
  13. Ju, S.M., Kwon, O-N., Kim, J.W., and Lee, J.S. (2011) Digestive enzyme activity within crystalline style in three species of bivalves. Korean Journal of Malacology, 27(1): 9-14. https://doi.org/10.9710/kjm.2011.27.1.009
  14. Judd, W. (1979) The secretions and fine structure of bivalve crystalline style sacs. Ophelia, 18: 205-233. https://doi.org/10.1080/00785326.1979.10425500
  15. Lobo-da-Cunha, A. (1999) Ultrastructural and cytochemical aspects of the basophilic cells in the hepatopancreas of Aplysia depilans (Mollusca, Opisthobranchia). Tissue & Cell, 31: 8-16. https://doi.org/10.1054/tice.1998.0014
  16. Lobo-da-Cunha A. (2000) The digestive cells of the hepatopancreas in Aplysia delipans (Mollusca, Opisthobranchia): ultrastructural and cytochemical study. Tissue & Cell, 32: 49-57. https://doi.org/10.1054/tice.1999.0082
  17. Morton, B.S. (1983) Feeding and digestion in bivalves. In: The Mollusca Physiology 5th. (ed. by Saleuddin, A.S.M. and Wilburg, M.). pp. 563-586. Academic Press, New York.
  18. Owen, G. (1955) Observations on the stomach and digestive diverticula of the Lamellibranchia. I. The Anisomyaria and Eulamellibrasnchia. Quarterly Journal of Microscopical Sciences, 96: 517-537.
  19. Owen, G. (1970) The fine structure of the digestive tubules of the marine bivalve Cardium edule. Philosophical Transactions of Royal Society B: Biological Sciences, 258: 245-260. https://doi.org/10.1098/rstb.1970.0035
  20. Park, J.J. and Lee, J.S. (2010). Ultrastructural changes in digestive gland and lipofuscin accumulation of the equilateral venus, Gomphina veneriformis (Bivalvia: Veneridae) on tributyltin chloride (TBTCl) toxicity. Korean Journal of Malacology, 26(1): 63-78.
  21. Reid, R.G.B. and Sweeney, B. (1980) The digestibility of the bivalve crystalline style. Comparative Biochemistry and Physiology, Part B, 65(2): 451-453. https://doi.org/10.1016/0305-0491(80)90048-6
  22. Robledo, Y., Marigómez, I., Angulo, E. and Cajaraville, M.P. (2006) Glycosylation and sorting pathway of lysosomal enzymes in mussel digestive cells. Cell and Tissue Research, 324: 319-333. https://doi.org/10.1007/s00441-005-0125-9
  23. Seiderer, L.J., Newell, R.C. and Cook, P.A. (1982) Quantitative significance of style enzymes from two marine mussels (Choromytilus meridiomalis Krauss and Pern aperna Linnaeus) in relation to diet. Marine Biology Letters, 3: 257-271.
  24. Wojtowicz, M.B. (1972) Carbohydrases of the digestive gland and the crystalline style of the Atlantic deep-sea scallop (Placopecten magellanicus Gmelin). Comparative Biochemistry and Physiology, Part A, 43(1): 131-141. https://doi.org/10.1016/0300-9629(72)90475-6
  25. Xu, B. (2002) Endoglucanase and mannanase from blue mussel, Mytilus edulis purification, characterization, gene and three dimensional structure. Acta Universitatis Upsaliensis, Sweden, pp. 57.