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Abstract This study was to isolate an active component of the

chloroform fraction from the methanol extract of Ruta chalepensis

leaves and to measure inhibitory effects against α-glucosidase or

α-amylase. The inhibitory compound of R. chalepensis leaves was

isolated using chromatographic methods and identified as quinoline.

Quinoline and its structurally related derivatives were tested for

their inhibitory activities by evaluating the IC50 values against α-

amylase or α-glucosidase and were compared with that of acarbose.

Based on the IC50 values, quinazoline exhibited the greatest

inhibitory activity (20.5 µg/mL), followed by acarbose (66.5 µg/

mL), and quinoline (80.3 µg/mL) against α-glucosidase. In case

of α-amylase, quinazoline had potent inhibitory activity, followed

by quinoline (179.5 µg/mL) and acarbose (180.6 µg/mL). These

results indicate that R. chalepensis extract, quinoline, and quinazoline

could be useful for inhibiting α-glucosidase or α-amylase.

Keywords α-amylase · α-glucosidase · inhibitory activity · quin-

oline · Ruta chalepensis 

Introduction

Diabetes mellitus is the most serious global health problem and

results in considerable morbidity and mortality (Nilubon et al.,

2006). Complications of diabetes such as terminal nephritis and

cardiovascular disorders are the principal cause of irreversible

blindness (Perez et al., 1998; Jeong et al., 2012). Diabetes falls

into two etiopathogenetic categories, types 1 and 2 (American

Diabetes Association., 2005; Nilubon et al., 2006). Diabetes type

1 is resulted in absolute deficiency of insulin secretion (Nilubon et

al., 2006; Frode and Medeiros, 2008). Diabetes type 2 is caused

by insufficient compensatory insulin secretion and a combination

of resistance to insulin action (Nilubon et al., 2006; Frode and

Medeiros, 2008). Attention to herbal remedies has increased

because of the side effects associated with treatment of oral

hypoglycemic agents and insulin (Holman and Turner, 1991; Lee,

2005; Kim et al., 2006; Jeong et al., 2012; Lee et al., 2014).

Ruta chalepensis L. (Rutaceae) is a perennial herb that is

extensively used in folk medicine. R. chalepensis is well-known

as an alternative medical therapy (antispasmodic, antirheumatic,

aphrodisiac) and a treatment for snakebites, headache, and

wounds (Ghazanfar, 1994). Furthermore, this plant is a rich source

of several acridones and coumarins, as well as quinoline alkaloids

(Ulubelen and Guner, 1988; Ulubelen and Terem, 1988; Lee and

Ahn, 1998; Lee, 2002). R. chalepensis exhibits insecticidal

activity against pests, with no noxious effects on parasitoids (Al-

mazraawi and Ateyyat, 2009) and shows antibacterial, antifungal,

anthelmintic, and anthelmintic effects (Di Stasi et al., 2002;

Alzoreky and Nakahara, 2003; Iauk et al., 2004; Yarnell and

Abascal, 2004; Cho et al., 2005; Rigat et al., 2007; Barrera-Necha

et al., 2009). However, no report on the inhibitory activity of

active compound isolated from R. chalepensis leaves and

structurally related derivatives against α-amylase or α-glucosidase

is available. Therefore, we isolated an active constituent from R.

chalepensis leaves and assessed the inhibitory effects of quinoline

derivatives against α-glucosidase or α-amylase.

Materials and Methods

Isolation and identification. R. chalepensis leaves were collected

from a market in Korea. R. chalepensis leaves (3.0 kg) were
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ground and extracted with methanol (11 L) at 25oC for 1.5 days.

The filtrate was poured into a EYELA Autojack NAJ-100

evaporator (Japan) at 45oC, and the methanol extract (20 g) was

continuously partitioned into hexane fraction (2.1 g), chloroform

fraction (3.7 g), ethyl acetate fraction (2.1 g), butanol fraction

(2.6 g), and water fraction (9.1 g) for subsequent bioassay. Five

organic fractions were dried by rotary evaporator at 40oC, and the

water fraction was freeze-dried.

Chloroform (43.8 g) fraction partitioned from the methanol

extract was chromatographed on a silica gel column (70−220

mesh, Merck, USA, 540 mm i.d.×680 mm) and eluted with a

stepwise gradient of chloroform/methanol (0, 10, 20, 30, 40, and

100% methanol, v/v) and petroleum ether/chloroform (10:1, v/v).

The column fractions were tested by thin layer chromatography

(chloroform/methanol, 10:1, v/v), and active fractions with similar

patterns were collected. The active fractions were chromatographed

on a silica gel column and eluted with petroleum ether/chloroform/

methanol (20:15:1, v/v). The active fraction (8.4 g) was isolated

by preparative high-performance liquid chromatography (HPLC)

(Japan Analytical Industry Co., Ltd., Japan). The first column was

a Jai gel GS Series Column (GS310 30 + GS310 50 cm) using

hexane:chloroform:isopropanol (40:60:2, v/v) at a flow rate of 4.5

mL/min and detection at 291 nm. This step afforded four

fractions. The active fraction (3.  g) was further chromatographed

on a Jaigel W Series column (W-252 50 +W-253 50 cm) using

hexane:chloroform:isopropanol (40:60:2, v/v) at a flow rate of 5.1

mL/min. The active component (1.4 g) was isolated and subjected

to structural determination via spectroscopic analyses. The 13C-

NMR and 1H-NMR spectra date were studied using a Bruker AM-

500 spectrometer (13C-400MHz; 1H-100MHz). Ultraviolet spectra

and mass spectra were studied using a Waters 490 spectrometer

and JEOL JMS-AX 302 spectrometer, respectively.

Chemicals and bioassay. Acarbose, quinazoline, and quinoxaline

were supplied from Sigma-Aldrich (USA). The inhibitory effects

of R. chalepensis extract, quinoline, and its structurally related

analogs were evaluated against α-glucosidase and α-amylase.

Inhibitory activity was assayed according to the procedure studied

by Lee et al. (2014) and Shinde et al. (2008) with a slight

modification against α-glucosidase. p-Nitrophenol was measured

using α-glucosidase after reaction with p-nitrophenyl-α-D-glu-

copyranoside. 0.6 U Enzyme solution was made by dissolving α-

glucosidase in 0.1 M phosphate buffer (pH 7.0) mixing up bovine

serum albumin (2 g/L, BSA) and sodium azide (0.2 g/L). 50 µL

Enzyme solution and 10 µL sample dissolved in DMSO were

blended and placed in a well plate. After 15 min, 5 mM p-nitro-

phenyl-α-D-glucopyranoside (50 µL) in 0.1 M phosphate buffer

was added, and the mixture was incubated for 9 min at 38oC. 0.1

M Na2CO3 was added to stop the reaction. The absorbance was

tested at 405 nm using a Model ASYS UVM 340 microplate

reader (Biochrom Ltd., England). Biological experiments were

replicated three times. Inhibition percentage (%) was evaluated

using the equation: Inhibition (%) = [1 − (sample/control)] × 100.

The IC50 value was calculated by logarithmic regression analysis.

Inhibitory activity was assayed in accordance with the procedure

studied by Jeong et al. (2012) and Wang et al. (2010) with some

modification against α-amylase. The enzyme solution (6.30 U/

mL) was made by dissolving α-amylase (Sigma Co., USA) in 0.5

M Tris buffer (pH 6.9). Starch azure (8 mg) was suspended in 0.5

M Tris buffer mixing up 0.01 M CaCl2 and soaked in boiling

water for 5 min followed by preincubation at 38oC for 9 min.

100 µL Enzyme solution and 100 µL sample into 50% DMSO

were blended in a well plate. 50% Acetic acid (50 µL) was added

to stop the reaction after 10 min. The absorbance was tested at 595

nm with a Model ASYS UVM 340 microplate reader. Biological

experiments were replicated three times. Inhibition percentage (%)

was evaluated using the equation: Inhibition (%) = [1 − (sample/

control)] × 100.

Results and Discussion

Five fractions partitioned from methanol extracts of R. chalepensis

leaves were assessed for inhibitory activity against α-glucosidase

and α-amylase (Table 1). At 1,500 µg/mL, the chloroform fraction

showed 100% inhibition against α-glucosidase and α-amylase,

whereas other fractions exhibited no inhibition. Active compound

was isolated by silica gel chromatography and preparative HPLC.

The active compound was identified by spectroscopic methods,

EI-Mass spectroscopy, 13C-NMR and 1H-NMR, and by comparison

with an authentic reference component. The active component

was characterized as quinoline (Fig. 1) based on the following

evidence: quinoline (C9H7N, MW, 129.2); EI-MS (70 eV) m/z (%

relative intensity): M+ 129 (100), 128 (15), 102 (25), 76 (10), 51

(12); 1H-NMR (CD3OD, 400 MHz); d 8.82-8.83 (1H, m, J = 6.12

Hz, H-2), 8.34-8.36 (1H, m, J = 8.56 Hz, H-8), 8.00-8.03 (1H, d,

1H, J = 8.52 Hz, H-4), 7.92-7.94 (1H, d, J =8 .32 Hz, H-5), 7.74-

7.78 (1H, m, J = 17.08 Hz, H-7), 7.58-7.62 (1H, m, J = 16.36 Hz,

H-6), 7.50-7.53 (1H, m, J = 12.72 Hz, H-3); 13C-NMR (CD3OD,

100 MHz); 150.8 (C-2), 148.4 (C-9), 137.9 (C-4), 130.8 (C-7),

129.4 (C-8), 129.1 (C-10), 128.8 (C-5), 127.7 (C-6), 122.4 (C-3).

The spectroscopic data of active constituent isolated from R.

chalepensis leaves were verified to match those of quinoline (Lee

and Lee, 2011).

Quinoline derivatives were selected to evaluate the changes in

inhibitory activity based on the position of nitrogen atoms in the

Table 1 α-Glucosidase and α-amylase inhibitory activities of various

fractions obtained from the methanol extract of R. chalepensis leaf

Samplesa
Inhibitory activities (%)
against α-glucosidase

Inhibitory activities (%)
against α-amylase 

Methanol extract 64.5±1.1 72.1±1.4

Hexane fraction bNAb NA

Chloroform fraction 100 100

Ethyl acetate fraction NA NA

Butanol fraction NA NA

Water fraction NA NA

aSample concentration, 1,500 µg/mL.
bNA, no activity.
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pyrazine ring such as quinazoline and quinoxaline against α-

glucosidase and α-amylase (Fig. 1). Quinoline, quinazoline, quin-

oxaline, and acarbose were tested for their inhibitory activities by

measuring their IC50 values against α-glucosidase and α-amylase.

Based on the IC50 values against α-glucosidase, quinazoline

exhibited the greatest inhibitory activity (20.5 µg/mL), followed

by acarbose (66.5 µg/mL), and quinoline (80.3 µg/mL) (Table 1).

In case of the inhibitory activity against α-amylase, quinazoline

had potent inhibitory activity followed by quinoline (179.5 µg/

mL), and acarbose (180.6 µg/mL) (Table 2). However, quinoxaline

did not exhibit any inhibitory activity against α-glucosidase or α-

amylase. Compared with that of acarbose, quinazoline exhibited

higher inhibitory activity against α-glucosidase than acarbose, but

quinoline showed less inhibitory activity against α-glucosidase

than acarbose. Quinazoline showed higher inhibitory activity

against α-amylase than that of acarbose. No significant difference

was observed between quinoline and acarbose against α-amylase.

These results indicate that quinoline and quinazoline had the great

inhibitory activity against α-glucosidase or α-amylase. Similarly,

Lee and Lee (2011) reported that quinoline and quinazoline

showed good relaxant effects on histamine-induced contraction in

guinea pig trachea. Interestingly, quinoxaline, which has a nitrogen

atom in place of a carbon atom in the pyridine ring, did not exhibit

any inhibitory activity against α-glucosidase or α-amylase. In

contrast, quinazoline showed the greatest inhibitory activities

against α-glucosidase or α-amylase. Similarly, previous studies

reported that the position of the nitrogen atom in the ring affects

α- and β-glucosidase inhibitory activities (Borges de Melo et al.,

2006). 

Based on the Material Safety Data sheet provided by Sigma-

Aldrich (2012), the oral lethal dose of quinoline (262 mg/kg)

indicates moderate acute toxicity to mammals. Based on our

findings, the inhibitory action of quinoline and quinazoline may

be useful as an inhibitory agent. However, further work is

necessary to determine toxicity to humans. 
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