DOI QR코드

DOI QR Code

Analysis of Hydrophobic Membrane Fouling on the COD Loading Rates at the State of Passive Adsorption in Membrane Bioreactor

생물학적 막분리 공정에서 수동흡착 상태에서의 유기물 유입 부하에 따른 소수성 막의 오염도 분석

  • Park, Tae-Young (Department of Environmental Engineering, Chungnam National University) ;
  • Choi, Changkyoo (Global Desalination Research Center, Gwangju Institute of Science and Technology)
  • 박태영 (충남대학교 환경공학과) ;
  • 최창규 (광주과학기술원 글로벌담수화연구센터)
  • Received : 2014.11.03
  • Accepted : 2015.03.30
  • Published : 2015.03.31

Abstract

This paper investigated the membrane fouling potential at the state of passive adsorption which is no permeation with the test modules on COD (Chemical oxygen demand) loading rates, examined the recovery rate and resistance on membrane fouling by three cleaning manners of hydrophobic membrane in a bioreactor. The results showed that high COD loading led to the increase of extra-cellular polymeric substances and filtration resistance. The permeability resistance from 1st day to 63rd day was getting increased, however, the value of permeability resistance after 63th day during the operation period was almost same level at three COD loading rates, it was due that the biomass adhesion on membrane surface at the state of passive adsorption reached to the critical state. Also, the final recovery rates after three cleaning manners were 78%, 72% and 69% at the COD loading concentrations of 250 mg/L, 500 mg/L and 750 mg/L respectively, and then recovery rate by physical cleaning at Run 2 and Run 3 was decreased after 40th day, it proved that biomass cake, which is not easily removed, was formed on the membrane surface because of high COD loading rate and EPS concentration.

본 연구는 소수성 막 재질에 대한 막오염도를 평가하고자 수동흡착의 개념을 도입하여 정상운전을 위한 막 모듈 이외에 수동흡착 시험용 막 모듈을 설치하여 유출을 시키지 않은 상태에서 막 표면에 부착되는 미생물에 의한 막오염 정도를 분석함으로써 소수성 막오염 잠재성을 평가하고자 하였으며, 이때 운전조건으로 유기물 유입부하를 변화시켜 평가하였다. 이와 더불어 오염된 멤브레인을 세 가지 세정방법(두가지 물리적 세정과 화학적 세정)을 통해 막 세정 전후의 막오염 회복률을 평가하였다. 막오염 평가인자로는 반응조 내 MLSS 농도와 EPS 농도를 조사하였으며, 여과저항 값을 산정하여 막오염 전과 후, 세정 3단계 전과 후를 비교 평가하였다. 실험 결과로서, COD 농도가 750 mg/L인 가장 높은 부하량 조건에서 반응조 내 EPS 농도와 수동흡착 시험용 멤브레인의 여과저항 값이 가장 높게 나타났다. 또한 여과저항 값이 초기 운전 시작 후 차이를 보였지만 60일 이후의 최종 여과저항은 거의 일정하게 나타났는데, 이는 막 표면에 부착된 미생물량이 임계점에 이르러 수동흡착만으로는 더 이상의 막오염은 진행되지 않은 것으로 판단된다. PAds 상태에서 유기물 유입부하에 따른 오염된 막의 세정 전후의 여과저항 측정 결과에서는 3단계 세정 후 평균 회복률이 각각 Run 1이 78%, Run 2가 72%, Run 2가 69%로 유기물 부하가 높을수록 회복률이 떨어지는 것으로 나타났으며, 반면에 물리적 세정에 의한 복원률이 40일 경부터 Run 2와 Run 3의 물리적 세정에 의한 회복률이 낮아지는 것으로 보아 높은 유기물 부하로 인한 막표면의 케이크 형성으로 막오염이 심화된 것으로 판단된다.

Keywords

References

  1. Yamamoto, K., Hiasa, M., Mahmood, T. and Matsuo, T., "Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank," Water Sci. & Technol., 21, 43-54(1989).
  2. Chiemchaisri, C., Wong, Y. K., Urase, T. and Yamamoto, K., "Organic stabilisation and nitrogen removalin a membrane separation bioreactor for domestic wastewater treatment," Water Sci. & Technol., 28, 325-333(1992).
  3. Melin, T., Jefferson, B., Bixio, D., Thoeye, C., Wilde, W. and Koning, J., "Membrane Bioreactro technology on wastewater treatment and reuse," Desalination, 187, 271-282(2006). https://doi.org/10.1016/j.desal.2005.04.086
  4. Choi, S. H., Cho, N. U. and Han, M. S., "The Estimating an Effect of Rapid Flux Increase to a Membrane in the Intermittent Aeration MBR Process Using Alum Treatment," J. Membr., 15(1), 70-83(2005).
  5. Djjk, L. and Roncken, G. C. G., "Membrane bioreactors for wastewater treatment: the state of the art and new developments," Water Sci. Technol., 35(10), 35-41(1997). https://doi.org/10.1016/S0273-1223(97)00219-9
  6. Meng, F., Zhang, H., Yang, F., Zhang, S., Li, Y. and Zhang, X., "Identification of activated sludge properties affecting membrane fouling in submerged membrane bioreactors," Sep. Purific. Technol., 51(1), 95-103(2006). https://doi.org/10.1016/j.seppur.2006.01.002
  7. Yang, W., et. al., "State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in north america," J. Membr. Sci., 270(1-2), 201-211(2006). https://doi.org/10.1016/j.memsci.2005.07.010
  8. Jang, M. S., Kim, J. H., Lee, J. W., "Prospect and Present Status of MBR Technology for Advanced Wastewater Treatment," J. Korean Soc. Environ. Eng., 30(1), 15-20(2008).
  9. Broeck, R., Dierdonck, J., Nijskens, P., Dotremont, C., Krzeminski, P., Graaf, J., Lier, J., Impe, J. and Smets, I., "The influence of solids retention time on activated sludge bioflocculation and membrane fouling in a membrane bioreactor (MBR)," J. Membr. Sci., 401-402, 48-55(2012). https://doi.org/10.1016/j.memsci.2012.01.028
  10. Gao, D. W., Wen, Z. D., Li, B. and Liang, H., "Microbial community structure characteristics associated membrane fouling in A/O-MBR system," Bioresour. Technol., 154, 87-93(2014). https://doi.org/10.1016/j.biortech.2013.11.051
  11. Lee, J. M., Choi, C. K. and Lee, K. H., "Characteristic of Membrane Fouling and Estimation of Passive Adsorption According to COD Loads of Influent in Membrane Bioreactor," J. Korean Soc. Water Sci. Technol., 18(6), 33-41 (2010).
  12. Shin, S. W., Choi, C. K. and Lee, K. H., "Estimation for Membrane Resistance and Recovery Rate of Contaminated Hydrophilic Membrane through Passive Adsorption in MBR," J. Korean Soc. Water Sci. Technol., 16(3), 49-56(2008).
  13. Lim, A. L. and Bai, R., "Membrane fouling and cleaning in microfiltration of activated sludge wastewater," J. Membr. Sci., 1-2(216) 279-290(2003). https://doi.org/10.1016/S0376-7388(03)00083-8
  14. Lee, J. M., Choi, C. K. and Lee, K. H., "Recovery Rate of Membrane Fouling by Cleaning Methods in Membrane Bioreactor (MBR)," J. Korean Soc. Water Sci. Technol., 18(5), 77-84(2010).
  15. Platt, S. and Nystrӧm, M., "Cleaning of membranes fouled by proteins to evalute the importance of fully developed flow," Desalination, 208, 19-13(2007). https://doi.org/10.1016/j.desal.2006.04.071
  16. APHA, Standard Methods, 20th ed.(1998).
  17. Park, J. W. and Park, H. J., "A Study on Fouling Characteristics and Applicability of Fouling Reducer in Submerged MBR Process," J. Korean Soc. Environ. Eng., 35(5), 371-380 (2013). https://doi.org/10.4491/KSEE.2013.35.5.371