DOI QR코드

DOI QR Code

Selenium in Pig Nutrition and Reproduction: Boars and Semen Quality - A Review

  • Surai, Peter F. (Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University) ;
  • Fisinin, Vladimir I. (All-Russian Institute of Poultry Husbandry)
  • Received : 2014.08.01
  • Accepted : 2014.11.23
  • Published : 2015.05.01

Abstract

Selenium plays an important role in boar nutrition via participating in selenoprotein synthesis. It seems likely that selenoproteins are central for antioxidant system regulation in the body. Se-dependent enzyme glutathione peroxidase (GSH-Px) is the most studied selenoprotein in swine production. However, roles of other selenoproteins in boar semen production and maintenance of semen quality also need to be studied. Boar semen is characterised by a high proportion of easily oxidized long chain polyunsaturated fatty acids and requires an effective antioxidant defense. The requirement of swine for selenium varies depending on many environmental and other conditions and, in general, is considered to be 0.15 to 0.30 mg/kg feed. It seems likely that reproducing sows and boars are especially sensitive to Se deficiency, and meeting their requirements is an important challenge for pig nutritionists. In fact, in many countries there are legal limits as to how much Se may be included into the diet and this restricts flexibility in terms of addressing the Se needs of the developing and reproducing swine. The analysis of data of various boar trials with different Se sources indicates that in some cases when background Se levels were low, there were advantages of Se dietary supplementation. It is necessary to take into account that only an optimal Se status of animals is associated with the best antioxidant protection and could have positive effects on boar semen production and its quality. However, in many cases, background Se levels were not determined and therefore, it is difficult to judge if the basic diets were deficient in Se. It can also be suggested that, because of higher efficacy of assimilation from the diet, and possibilities of building Se reserves in the body, organic selenium in the form of selenomethionine (SeMet) provided by a range of products, including Se-Yeast and SeMet preparations is an important source of Se to better meet the needs of modern pig genotypes in commercial conditions of intensive pig production.

Keywords

References

  1. Ahsan, U., Z. Kamran, I. Raza, S. Ahmad, W. Babar, M. H. Riaz, and Z. Iqbal. 2014. Role of selenium in male reproduction - A review. Anim. Reprod. Sci. 146:55-62. https://doi.org/10.1016/j.anireprosci.2014.01.009
  2. Aitken, R. J., D. Harkiss, and D. Buckingham. 1993. Relationship between iron-catalysed lipid peroxidation potential and human sperm function. J. Reprod. Fertil. 98: 257-265. https://doi.org/10.1530/jrf.0.0980257
  3. Am-in, N., R. N. Kirkwood, M. Techakumphu, and W. Tantasuparuk. 2011. Lipid profiles of sperm and seminal plasma from boars having normal or low sperm motility. Theriogenology 75:897-903. https://doi.org/10.1016/j.theriogenology.2010.10.032
  4. Audet, I., J. P. Laforest, G. P. Martineau, and J. J. Matte. 2004. Effect of vitamin supplements on some aspects of performance, vitamin status, and semen quality in boars. J. Anim. Sci. 82: 626-633. https://doi.org/10.1093/ansci/82.2.626
  5. Audet, I., N. Berube, J. L. Bailey, J. P. Laforest, H. Quesnel, and J. J. Matte. 2009. Effects of dietary vitamin supplementation and semen collection frequency on hormonal profile during ejaculation in the boar. Theriogenology 71:334-341. https://doi.org/10.1016/j.theriogenology.2008.07.026
  6. Audet, I., N. Berube, J. L. Bailey, J. P. Laforest, and J. J. Matte. 2009a. Effects of dietary vitamin supplementation and semen collection frequency on reproductive performance and semen quality in boars. J. Anim. Sci. 87:1960-1970. https://doi.org/10.2527/jas.2008-1714
  7. Awda, B. J. and M. M. Buhr. 2010. Extracellular signal-regulated kinases (ERKs) pathway and reactive oxygen species regulate tyrosine phosphorylation in capacitating boar spermatozoa. Biol. Reprod. 83: 750-758. https://doi.org/10.1095/biolreprod.109.082008
  8. Awda, B. J., M. Mackenzie-Bell, and M. M. Buhr. 2009. Reactive oxygen species and boar sperm function. Biol. Reprod. 81: 553-561. https://doi.org/10.1095/biolreprod.109.076471
  9. Bailey, J. L., J-F. Bilodeau, and N. Cormier. 2000. Semen cryopreservation in domestic animals: A damaging and capacitating phenomenon. J. Androl. 21: 1-7.
  10. Barger, J. L., T. Kayo, T. D. Pugh, J. A. Vann, R. Power, K. Dawson, R. Weindruch, and T. A. Prolla. 2012. Gene expression profiling reveals differential effects of sodium selenite, selenomethionine, and yeast-derived selenium in the mouse. Genes Nutr. 7:155-165. https://doi.org/10.1007/s12263-011-0243-9
  11. Bathgate, R. 2011. Antioxidant mechanisms and their benefit on post-thaw boar sperm quality. Reprod. Domest. Anim. 46(Suppl. 2):23-25. https://doi.org/10.1111/j.1439-0531.2011.01826.x
  12. Bierla, K., J. Bianga, L. Ouerdane, J. Szpunar, A. Yiannikouris, and R. A. Lobinski. 2013. A comparative study of the Se/S substitution in methionine and cysteine in Se-enriched yeast using an inductively coupled plasma mass spectrometry (ICP MS)-assisted proteomics approach. J. Proteomics 87:26-39. https://doi.org/10.1016/j.jprot.2013.05.010
  13. Breininger, E., N. B. Beorlegui, C. M. O'Flaherty, and M. T. Beconi. 2005. Alpha-tocopherol improves biochemical and dynamic parameters in cryopreserved boar semen. Theriogenology 63:2126-2135. https://doi.org/10.1016/j.theriogenology.2004.08.016
  14. Briens, M., Y. Mercier, F. Rouffineau, V. Vacchina, and P. A. Geraert. 2013. Comparative study of a new organic selenium source v. seleno-yeast and mineral selenium sources on muscle selenium enrichment and selenium digestibility in broiler chickens. Br. J. Nutr. 110:617-624. https://doi.org/10.1017/S0007114512005545
  15. Briens, M., Y. Mercier, F. Rouffineau, F. Mercerand, and P. A. Geraert. 2014. 2-hydroxy-4-methylselenobutanoic acid induces additional tissue selenium enrichment in broiler chickens compared with other selenium sources. Poult. Sci. 93:85-93. https://doi.org/10.3382/ps.2013-03182
  16. Brigelius-Flohe, R. and M. Maiorino. 2013. Glutathione peroxidases. Biochim. Biophys. Acta. 1830:3289-3303. https://doi.org/10.1016/j.bbagen.2012.11.020
  17. Brouwers, J. F. and B. M. Gadella. 2003. In situ detection and localization of lipid peroxidation in individual bovine sperm cells. Free Radic. Biol. Med. 35:1382-1391. https://doi.org/10.1016/j.freeradbiomed.2003.08.010
  18. Buhr, M. M., E. F. Curtis, and N. S. Kakuda. 1994. Composition and behavior of head membrane lipids of fresh and cryopreserved boar sperm. Cryobiology 31:224-238. https://doi.org/10.1006/cryo.1994.1028
  19. Calabrese, V., C. Cornelius, A.T. Dinkova-Kostova, I. Iavicoli, R. Di Paola, A. Koverech, S. Cuzzocrea, E. Rizzarelli, and E. J. Calabrese. 2012. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim. Biophys. Acta. 1822:753-783. https://doi.org/10.1016/j.bbadis.2011.11.002
  20. Castellano, C. A., I. Audet, J. L. Bailey, J. P. Laforest, and J. J. Matte. 2010. Dietary omega-3 fatty acids (fish oils) have limited effects on boar semen stored at $17^{\circ}C$ or cryopreserved. Theriogenology 74:1482-1490. https://doi.org/10.1016/j.theriogenology.2010.06.020
  21. Chatterjee, S., E. de Lamirande, and C. Gagnon. 2001. Cryopreservation alters membrane sulfhydryl status of bull spermatozoa: protection by oxidized glutathione. Mol. Reprod. Dev. 60:498-506. https://doi.org/10.1002/mrd.1115
  22. Cerolini, S., A. Maldjian, P. F. Surai, and R. C. Noble. 2000. Viability, susceptibility to peroxidation and fatty acid composition of boar semen during liquid storage. Anim. Reprod. Sci. 58:99-111. https://doi.org/10.1016/S0378-4320(99)00035-4
  23. Cerolini, S., A. Maldjian, F. Pizzi, and T. M. Gliozzi. 2001. Changes in sperm quality and lipid composition during cryopreservation of boar semen. Reproduction 121:395-401. https://doi.org/10.1530/rep.0.1210395
  24. Chen, S. J., J. P. Allam, Y. G. Duan, and G. Haidl. 2013. Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch. Gynecol. Obstet. 288:191-199. https://doi.org/10.1007/s00404-013-2801-4
  25. Comhaire, F. H., A. B. Christophe, A. A. Zalata, W. S. Dhooge, A. M. A. Mahmoud, and C. E. Depuydt. 2000. The effects of combined conventional treatment, oral antioxidants and essential fatty acids on sperm biology in subfertile men. Prostaglandins Leukot. Essent. Fatty Acids 63:159-165. https://doi.org/10.1054/plef.2000.0174
  26. Conquer, J. A., J. B. Martin, I. Tummon, L. Watson, and F. Tekpetey. 1999. Fatty acid analysis of blood serum, seminal plasma, and spermatozoa of normozoospermic vs. asthernozoospermic males. Lipids 34:793-799. https://doi.org/10.1007/s11745-999-0425-1
  27. Ferguson, L. R., N. Karunasinghe, S. Zhu, and A. H. Wang. 2012. Selenium and its' role in the maintenance of genomic stability. Mutat. Res. Fundam. Mol. Mech. Mutagen. 733: 100-110. https://doi.org/10.1016/j.mrfmmm.2011.12.011
  28. Fisinin, V. I., T. T. Papazyan, and P. F. Surai. 2008. Selenium in poultry nutrition. In: Current Advances in Se Research and Applications (Eds. P. F. Surai and J. Taylor-Pickard). Wageningen Academic Publishers, Wageningen, The Netherlands. pp. 221-261.
  29. Flohe, L. and R. Zimmermann. 1970. The role of GSH peroxidase in protecting the membrane of rat liver mitochondria. Biochim. Biophys. Acta. 223: 210-213. https://doi.org/10.1016/0005-2728(70)90149-0
  30. Fraser, L., J. Strzezek, and W. Kordan. 2014. Post-thaw sperm characteristics following long-term storage of boar semen in liquid nitrogen. Anim. Reprod. Sci. 147:119-127. https://doi.org/10.1016/j.anireprosci.2014.04.010
  31. Foresta, C., L. Flohe, A. Garolla, A. Roveri, F. Ursini, and M. Maiorino. 2002. Male fertility is linked to the selenoprotein phospholipid hydroperoxide glutathione peroxidase. Biol. Reprod. 67: 967-971. https://doi.org/10.1095/biolreprod.102.003822
  32. Fortier, M. E., I. Audet, A. Giguere, J. P. Laforest, J. F. Bilodeau, H. Quesnel, and J. J. Matte. 2012. Effect of dietary organic and inorganic selenium on antioxidant status, embryo development, and reproductive performance in hyperovulatory first-parity gilts. J Anim Sci. 90:231-240. https://doi.org/10.2527/jas.2010-3340
  33. Gadea, J., D. Gumbao, C. Matas, and R. Romar. 2005. Supplementation of the thawing media with reduced glutathione improves function and the in vitro fertilizing ability of boar spermatozoa after cryopreservation. J. Androl. 26: 749-756. https://doi.org/10.2164/jandrol.05057
  34. Gomez-Fernandez, J., E. Gomez-Izquierdo, C. Tomas, E. Moce, and E. de Mercado. 2013. Is sperm freezability related to the post-thaw lipid peroxidation and the formation of reactive oxygen species in boars? Reprod. Domest. Anim. 48:177-182. https://doi.org/10.1111/j.1439-0531.2012.02126.x
  35. Griveau, J. F., E. Dumont, P. Renard, J. P. Callegari, and D. LeLannou. 1995. Reactive oxygen species, lipid peroxidation and enzymatic defence systems in human spermatozoa. J. Reprod. Fertil. 103: 17-26. https://doi.org/10.1530/jrf.0.1030017
  36. Guerriero, G., S. Trocchia, F. K. Abdel-Gawad, and G. Ciarcia. 2014. Roles of reactive oxygen species in the spermatogenesis regulation. Front. Endocrinol. (Lausanne). 5:56. eCollection 2014.
  37. Halliwell, B. 1994. Free radicals and antioxidants: A personal view. Nutr. Rev. 52:253-265.
  38. Halliwell, B. and J. M. C. Gutteridge. 1999. Free Radicals in Biology and Medicine. Third Edition. Oxford University Press, Oxford, UK.
  39. Hatfield, D. L., P. A. Tsuji, B. A. Carlson, and V. N. Gladyshev. 2014. Selenium and selenocysteine: Roles in cancer, health, and development. Trends Biochem. Sci. 39:112-120. https://doi.org/10.1016/j.tibs.2013.12.007
  40. Horky, P., P. Jancikova, J. Sochor, D. Hynek, G. J. Chavis, B. Ruttkay-Nedecky. N. Cernei, O. Zitka, L. Zeman, V. Adam, and R. Kizek. 2012. Effect of organic and inorganic form of selenium on antioxidant status of breeding boars ejaculate revealed by electrochemistry. Int. J. Electrochem. Sci. 7: 9643-9657.
  41. Hu, H., M. Wang, X. Zhan, X. Li, and R. Zhao. 2011. Effect of different selenium sources on productive performance, serum and milk Se concentrations, and antioxidant status of sows. Biol. Trace Elem. Res. 142:471-480. https://doi.org/10.1007/s12011-010-8803-1
  42. Hu, J., G. Geng, Q. Li, X. Sun, H. Cao, and Y. Liu. 2014. Effects of alginate on frozen-thawed boar spermatozoa quality, lipid peroxidation and antioxidant enzymes activities. Anim. Reprod. Sci. 147:112-118. https://doi.org/10.1016/j.anireprosci.2014.04.007
  43. Imai, H. and Y. Nakagawa. 2003. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic. Biol. Med. 34:145-169. https://doi.org/10.1016/S0891-5849(02)01197-8
  44. Imai, H., K. Suzuki, K. Ishizaka, S. Ichinose, H. Oshima, I. Okayasu, K. Emoto, M. Umeda, and Y. Nakagawa. 2001. Failure of the expression of phospholipid hydroperoxide glutathione peroxidase in the spermatozoa of human infertile males. Biol. Reprod. 64:674-683. https://doi.org/10.1095/biolreprod64.2.674
  45. Jelezarsky, L., Ch. Vaisberg, T. Chaushev, and E. Sapundjiev. 2008. Localization and characterization of glutathione peroxidase (GPx) in boar accessory sex glands, seminal plasma, and spermatozoa and activity of GPx in boar semen. Theriogenology 69:139-145. https://doi.org/10.1016/j.theriogenology.2007.08.016
  46. Jlali, M., M. Briens, F. Rouffineau, F. Mercerand, P. A. Geraert, and Y. Mercier. 2013. Effect of 2-hydroxy-4- methylselenobutanoic acid as a dietary selenium supplement to improve the selenium concentration of table eggs. J. Anim. Sci. 91:1745-1752. https://doi.org/10.2527/jas.2012-5825
  47. Jlali, M., M. Briens, F. Rouffineau, P. A. Geraert, and Y. Mercier. 2014. Evaluation of the efficacy of 2-hydroxy-4- methylselenobutanoic acid on growth performance and tissue selenium retention in growing pigs. J. Anim. Sci. 92:182-188. https://doi.org/10.2527/jas.2013-6783
  48. Kolodziej, A. Q. and E. Jacyno. 2005. Effect of selenium and vitamin E supplementation on reproductive performance of young boars. Arch. Tierz., Dummerstorf. 48: 68-75.
  49. Kowalowka, M., P. Wysocki, L. Fraser, and J. Strzezek. 2008. Extracellular superoxide dismutase of boar seminal plasma. Reprod. Domest. Anim. 43:490-496. https://doi.org/10.1111/j.1439-0531.2007.00943.x
  50. Koziorowska-Gilun, M., M. Koziorowski, L. Fraser, and J. Strzezek. 2011. Antioxidant defence system of boar cauda epididymidal spermatozoa and reproductive tract fluids. Reprod. Domest. Anim. 46:527-533. https://doi.org/10.1111/j.1439-0531.2010.01701.x
  51. Kumaresan, A., G. Kadirvel, K. M. Bujarbaruah, R. K. Bardoloi, A. Das, S. Kumar, and S. Naskar. 2009. Preservation of boar semen at 18 degrees C induces lipid peroxidation and apoptosis like changes in spermatozoa. Anim. Reprod. Sci. 110:162-171. https://doi.org/10.1016/j.anireprosci.2008.01.006
  52. Labunskyy, V. M., D. L. Hatfield, and V. N. Gladyshev. 2014. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 94:739-777. https://doi.org/10.1152/physrev.00039.2013
  53. Ladha, S. 1998. Lipid heterogeneity and membrane fluidity in a highly polarized cell, the mammalian spermatozoon. J. Membr. Biol. 165:1-10. https://doi.org/10.1007/s002329900415
  54. Lei, X. G., J. K. Evenson, K. M. Thompson, and R. A. Sunde. 1995. Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J. Nutr. 125:1438-1446.
  55. Lenzi, A., L. Gandini, V. Maresca, R. Rago, P. Sgro, F. Dondero, and M. Pivardo. 2000. Fatty acid composition of spermatozoa and immature germ cells. Mol. Hum. Reprod. 6: 226-231. https://doi.org/10.1093/molehr/6.3.226
  56. Li, T. K. 1975. The glutathione and thiol content of mammalian spermatozoa and seminal plasma. Biol. Reprod. 12: 641-646. https://doi.org/10.1095/biolreprod12.5.641
  57. Lindemann, T., A. Prange, W. Dannecker, and B. Neidhart. 2000. Stability studies of arsenic, selenium, antimony and tellurium species in water, urine, fish and soil extracts using HPLC/ICPMS. Fresenius J. Anal. Chem. 368:214-220. https://doi.org/10.1007/s002160000475
  58. Lopez, A., T. Rijsselaere, A. Van Soom, J. L. M. R. Leroy, J. B. P. De Clercq, P. E. J. Bols, and D. Maes. 2010. Effect of organic selenium in the diet on sperm quality of boars. Reprod. Domest. Anim. 45:e297-e305. https://doi.org/10.1111/j.1439-0531.2009.01560.x
  59. Lovercamp, K. W., K. R. Stewart, X. Lin, and W. L. Flowers. 2013. Effect of dietary selenium on boar sperm quality. Anim. Reprod. Sci. 138:268-275. https://doi.org/10.1016/j.anireprosci.2013.02.016
  60. Luberda, Z. 2005. The role of glutathione in mammalian gametes. Reprod. Biol. 5:5-17.
  61. Mahan, D., J. Zawadzki, and R. Guerrero. 2002. Mineral metabolism and boar fertility: Observations from Latin America to Europe. In: Nutritional Biotechnology in the Feed and Food Industries (Eds. T. P. Lyons and K. A. Jacques). Nottingham University Press, Nottingham, UK. pp. 411-418.
  62. Mahan, D. C., T. R. Cline, and B. Richert. 1999. Effects of dietary levels of selenium-enriched yeast and sodium selenite as selenium sources fed to growing-finishing pigs on performance, tissue selenium, serum glutathione peroxidase activity, carcass characteristics, and loin quality. J. Anim. Sci. 77: 2172-2179. https://doi.org/10.2527/1999.7782172x
  63. Mangiapane, E., A. Pessione, and E. Pessione. 2014. Selenium and selenoproteins: An overview on different biological systems. Curr. Protein Pept. Sci. 15:598-607. https://doi.org/10.2174/1389203715666140608151134
  64. Marin-Guzman, J., D. C. Mahan, Y. K. Chung, J. L. Pate, and W. F. Pope. 1997. Effects of dietary selenium and vitamin E on boar performance and tissue responses, semen quality, and subsequent fertilization rates in mature gilts. J. Anim. Sci. 75: 2994-3003. https://doi.org/10.2527/1997.75112994x
  65. Marin-Guzman, J., D. C. Mahan, and R. Whitmoyer. 2000. Effect of dietary selenium and vitamin E on the ultrastructure and ATP concentration of boar spermatozoa, and the efficacy of added sodium selenite in extended semen on sperm motility. J. Anim. Sci. 78:1544-1550. https://doi.org/10.2527/2000.7861544x
  66. Marin-Guzman, J., D. C. Mahan, and J. L. Pate. 2000a. Effect of dietary selenium and vitamin E on spermatogenic development in boars. J. Anim. Sci. 78: 1537-1543. https://doi.org/10.2527/2000.7861537x
  67. Martins, S. M., A. F. De Andrade, F. G. Zaffalon, F. F. Bressan, S. M. Pugine, M. P. Melo, M. R. Chiaratti, C. T. Marino, A. S. Moretti, and R. P. Arruda. 2015. Organic selenium supplementation increases PHGPx but does not improve viability in chilled boar semen. Andrologia 17:85-90.
  68. Moreno, P., M. A. Quijano, A. M. Gutierrez, M. C. Perez-Conde, and C. Camara. 2002. Stability of total selenium and selenium species in lyophilised oysters and in their enzymatic extracts. Anal. Bioanal. Chem. 374: 466-476. https://doi.org/10.1007/s00216-002-1497-2
  69. Naher, Z. U., M. Ali, S. K. Biswas, F. H. Mollah, P. Fatima, M. M. Hossain, and M. I. Arslan. 2013. Effect of oxidative stress in male infertility. Mymensingh Med. J. 22:136-142.
  70. Nenicu, A., G. H. Luers, W. Kovacs, M. Bergmann, and E. Baumgart-Vogt. 2007. Peroxisomes in human and mouse testis: differential expression of peroxisomal proteins in germ cells and distinct somatic cell types of the testis. Biol. Reprod. 77: 1060-1072. https://doi.org/10.1095/biolreprod.107.061242
  71. National Research Council. 1998. Nutrient Requirement of Swine, 10th Revised Edition, National Academies Press, Washington, DC, USA.
  72. Orzolek, A., P. Wysocki, J. Strzezek, and W. Kordan. 2013. Superoxide dismutase (SOD) in boar spermatozoa: Purification, biochemical properties and changes in activity during semen storage ($16^{\circ}C$) in different extenders. Reprod. Biol. 13:34-40.
  73. Parrilla, I., D. del Olmo, L. Sijses, M. J. Martinez-Alborcia, C. Cuello, J. M. Vazquez, E. A. Martinez and J. Roca. 2012. Differences in the ability of spermatozoa from individual boar ejaculates to withstand different semen-processing techniques. Anim. Reprod. Sci. 132:66-73. https://doi.org/10.1016/j.anireprosci.2012.04.003
  74. Payne, R. L. and L. L. Southern. 2005. Changes in glutathione peroxidase and tissue selenium concentrations of broilers after consuming a diet adequate in selenium. Poult. Sci. 84:1268-1276. https://doi.org/10.1093/ps/84.8.1268
  75. Poulos, A., A. Darin-Bennett, and I. G. White. 1973. The phospholipid-bound fatty acids and aldehydes of mammalian spermatozoa. Comp. Biochem. Physiol. Part B. Comp. Biochem. 46B:541-549.
  76. Radomil, L., M. J. Pettitt, K. M. Merkies, K. D. Hickey, and M. M. Buhr. 2011. Stress and dietary factors modify boar sperm for processing. Reprod. Domest. Anim. 46(Supp l 2):39-44.
  77. Reyes, H. L., J. M. Marchante-Gayon, J. I. Garcia Alonso, and A. Sanz-Medel. 2006. Application of isotope dilution analysis for the evaluation of extraction conditions in the determination of total selenium and selenomethionine in yeast-based nutritional supplements. J. Agric. Food Chem. 54:1557-1563. https://doi.org/10.1021/jf0523768
  78. Saaranen, M., U. Suistomaa, and T. Vanha-Perttula. 1989. Semen selenium content and sperm mitochondrial volume in human and some animal species. Hum. Reprod. 4: 304-308. https://doi.org/10.1093/oxfordjournals.humrep.a136893
  79. Satorre, M. M., E. Breininger, and M. T. Beconi. 2012. Cryopreservation with $\alpha$-tocopherol and Sephadex filtration improved the quality of boar sperm. Theriogenology 78:1548-1556. https://doi.org/10.1016/j.theriogenology.2012.06.023
  80. Schneider, M., H. Forster, A. Boersma, A. Seiler, H. Wehnes, F. Sinowatz, C. Neumuller, M. J. Deutsch, A. Walch, M. Hrabe de Angelis, W. Wurst, F. Ursini, A. Roveri, M. Maleszewski, M. Maiorino, and M. Conrad. 2009. Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J. 23: 3233-3242. https://doi.org/10.1096/fj.09-132795
  81. Schrauzer, G. N. 2000. Selenomethionine: A review of its nutritional significance, metabolism and toxicity. J. Nutr. 130: 1653-1656. https://doi.org/10.1093/jn/130.7.1653
  82. Segerson, E. C., W. R. Getz, and B. H. Johnson. 1981. Selenium and reproductive function in boars fed a low selenium diet. J. Anim. Sci. 53:1360-1367. https://doi.org/10.2527/jas1981.5351360x
  83. Speight, S. M., M. J. Estienne, A. F. Harper, R. J. Crawford, J. W. Knight, and B. D. Whitaker. 2012. Effects of dietary supplementation with an organic source of selenium on characteristics of semen quality and in vitro fertility in boars. J. Anim. Sci. 90:761-770. https://doi.org/10.2527/jas.2011-3874
  84. Speight, S. M., M. J. Estienne, A. F. Harper, C. R. Barb, and T. D. Pringle. 2012a. Effects of organic selenium supplementation on growth performance, carcass measurements, tissue selenium concentrations, characteristics of reproductive organs, and testis gene expression profiles in boars. J. Anim. Sci. 90: 533-542. https://doi.org/10.2527/jas.2010-3747
  85. Strzezek, J. 2002. Secretory activity of boar seminal vesicle glands. Reprod. Biol. 2:243-266.
  86. Strzezek, J., S. Lapkiewicz, and M. Lecewicz. 1999. A note of antioxidant capacity of boar seminal plasma. Anim. Sci. Pap. Rep. 17:181-188.
  87. Strzezek, J., P. Wysocki, W. Kordan, M. Kuklinska, M. Mogielnicka, D. Soliwoda, and L. Fraser. 2005. Proteomics of boar seminal plasma - current studies and possibility of their application in biotechnology of animal reproduction. Reprod. Biol. 5:279-290.
  88. Sunde, R. A. 1994. Intracellular glutathione peroxidases - structure, regulation, and function. In: Selenium in Biology and Human Health (Ed. R.F. Burk). Springer-Verlag, New- York, USA. pp. 45-77.
  89. Surai, P. F. 2002. Natural Antioxidants in Avian Nutrition and Reproduction. Nottingham University Press, Nottingham, UK.
  90. Surai, P. F. 2006. Selenium in Nutrition and Health. Nottingham University Press, Nottingham, UK.
  91. Surai, P. F. and V. I. Fisinin. 2014. Selenium in poultry breeder nutrition: An update. Anim. Feed Sci. Technol. 191:1-15. https://doi.org/10.1016/j.anifeedsci.2014.02.005
  92. Surai, P. F., N. Fujihara, B. K. Speake, J-P. Brillard, G. J. Wishart, and N. H. C. Sparks. 2001. Polyunsaturated fatty acids, lipid peroxidation and antioxidant protection in avian semen. - Review -. Asian Australas. J. Anim. Sci. 14:1024-1050. https://doi.org/10.5713/ajas.2001.1024
  93. Surai, P. F., A. C. Pappas, F. Karadas, T. T. Papazyan, and V. I. Fisinin. 2010. Selenium enigma: Health implications of an inadequate supply. In: Modern Dietary Fat Intakes in Disease Promotion (Eds. Fabien De Meester, Sheerna Zibadi, and Donald Ross Watson). Humana Press, New York, USA. pp. 379-403.
  94. Tareq, K. M. A., Q. S. Akter, M. A. M. Khandoker, and H. Tsujii. 2012. Selenium and vitamin E improve the in vitro maturation, fertilization and culture to blastocyst of porcine oocytes. J. Reprod. Dev. 58:621-628. https://doi.org/10.1262/jrd.2012-064
  95. Thongchalam, K., T. Rukkwamsuk, and S. Chopmchai. 2012. Blood and semen selenium concentrations and semen quality in boars fed diets supplemented with organic or inorganic selenium. J. Anim. Vet. Adv. 11:603-608. https://doi.org/10.3923/javaa.2012.603.608
  96. Ursini, F., S. Heim, M. Kiess, M. Maiorino, A. Roveri, J. Wissing, and L. Flohe. 1999. Dual function of the selenoprotein PHGPx during sperm maturation. Science 285:1393-1396. https://doi.org/10.1126/science.285.5432.1393
  97. Ursini, F., M. Maiorino, and C. Gregolin. 1985. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim. Biophys. Acta 839:62-70. https://doi.org/10.1016/0304-4165(85)90182-5
  98. Vernet, P., E. Rock, A. Mazur, Y. Rayssiguier, J. P. Dufaure, and J. R. Drevet. 1999. Selenium-independent epididymis-restricted glutathione peroxidase 5 protein (GPX5) can back up failing Se-dependent GPXs in mice subjected to selenium deficiency. Mol. Reprod. Dev. 54:362-370. https://doi.org/10.1002/(SICI)1098-2795(199912)54:4<362::AID-MRD6>3.0.CO;2-#
  99. Vernet, P., R. J. Aitken, and J. R. Drevet. 2004. Antioxidant strategies in the epididymis. Mol. Cell. Endocrinol. 216: 31-39. https://doi.org/10.1016/j.mce.2003.10.069
  100. Walczak-Jedrzejowska, R., J. K. Wolski, and J. Slowikowska- Hilczer. 2013. The role of oxidative stress and antioxidants in male fertility. Cent. European J. Urol. 66:60-67.
  101. Waters, D. J., S. Shen, S. S. Kengeri, E. C. Chiang, G. F. Jr. Combs, J. S. Morris, and D. G. Bostwick. 2012. Prostatic response to supranutritional selenium supplementation: Comparison of the target tissue potency of selenomethionine vs. selenium-yeast on markers of prostatic homeostasis. Nutrients 4:1650-1663. https://doi.org/10.3390/nu4111650
  102. Wright, C., S. Milne, and H. Leeson. 2014. Sperm DNA damage caused by oxidative stress: Modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod. Biomed. Online 28:684-703. https://doi.org/10.1016/j.rbmo.2014.02.004
  103. Zelko, I. N., T. J. Mariani, and R. J. Folz. 2002. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Rad. Biol. Med. 33: 337-349. https://doi.org/10.1016/S0891-5849(02)00905-X
  104. Zhan, X., Y. Qie, M. Wang, X. Li, and R. Zhao. 2011. Selenomethionine: An effective selenium source for sow to improve Se distribution, antioxidant status, and growth performance of pig offspring. Biol. Trace Elem. Res. 142:481-491. https://doi.org/10.1007/s12011-010-8817-8
  105. Zhang, Q., L. Chen, K. Guo, L. Zheng, B. Liu, W. Yu, C. Guo, Z. Liu, Y. Chen, and Z. Tang. 2013. Effects of different selenium levels on gene expression of a subset of selenoproteins and antioxidative capacity in mice. Biol. Trace Elem. Res. 154: 255-261. https://doi.org/10.1007/s12011-013-9710-z

Cited by

  1. 16. Effect of Diet Supplemented with Antioxidants (Selenium, Copper, Vitamins E and C) on Antioxidant Status and Ejaculate Quality of Breeding Boars vol.16, pp.2, 2016, https://doi.org/10.1515/aoas-2015-0085
  2. A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species—A Critical Review vol.18, pp.10, 2017, https://doi.org/10.3390/ijms18102209
  3. Selenium, Selenoproteins, and Female Reproduction: A Review vol.23, pp.12, 2018, https://doi.org/10.3390/molecules23123053
  4. Pharmacokinetics of Sodium Selenite Administered Orally in Blood and Tissues of Selenium-Deficient Ducklings pp.1559-0720, 2019, https://doi.org/10.1007/s12011-018-1567-8
  5. Pathology in Practice vol.253, pp.6, 2018, https://doi.org/10.2460/javma.253.6.719
  6. Organic selenium supplementation is cost-effective for increasing the number of seminal doses produced by sexually mature boars vol.47, pp.0, 2018, https://doi.org/10.1590/rbz4720160328
  7. Antioxidant supplementation mitigates DNA damage in boar ( Sus scrofa domesticus ) spermatozoa induced by tropical summer vol.14, pp.4, 2019, https://doi.org/10.1371/journal.pone.0216143
  8. Role of Selenium and Selenoproteins in Male Reproductive Function: A Review of Past and Present Evidences vol.8, pp.8, 2015, https://doi.org/10.3390/antiox8080268
  9. Dietary Selenium Supplementation Ameliorates Female Reproductive Efficiency in Aging Mice vol.8, pp.12, 2015, https://doi.org/10.3390/antiox8120634
  10. Proline Protects Boar Sperm against Oxidative Stress through Proline Dehydrogenase-Mediated Metabolism and the Amine Structure of Pyrrolidine vol.10, pp.9, 2020, https://doi.org/10.3390/ani10091549
  11. Effect of maternal organic selenium supplementation during pregnancy on sow reproductive performance and long-term effect on their progeny vol.98, pp.12, 2015, https://doi.org/10.1093/jas/skaa366
  12. Role for Selenium in Metabolic Homeostasis and Human Reproduction vol.13, pp.9, 2021, https://doi.org/10.3390/nu13093256
  13. The Antioxidant Properties of Selenium and Vitamin E; Their Role in Periparturient Dairy Cattle Health Regulation vol.10, pp.10, 2021, https://doi.org/10.3390/antiox10101555
  14. Supplementation of Avian Semen Extenders with Antioxidants to Improve Semen Quality-Is It an Effective Strategy? vol.10, pp.12, 2015, https://doi.org/10.3390/antiox10121927