References
- Bach, A.-S., S. Enjalbert, F. Comunale, S. Bodin, N. Vitale, S. Charrasse, and C. Gauthier-Rouviere. 2010. ADP-ribosylation factor 6 regulates mammalian myoblast fusion through phospholipase D1 and phosphatidylinositol 4,5-bisphosphate signaling pathways. Mol. Biol. Cell 21:2412-2424. https://doi.org/10.1091/mbc.E09-12-1063
- Binns, M., D. A. Boehler, and D. H. Lambert. 2010. Identification of the myostatin locus (MSTN) as having a major effect on optimum racing distance in the Thoroughbred horse in the USA. Anim. Genet. 41:154-158. https://doi.org/10.1111/j.1365-2052.2010.02126.x
- Bosio, Y., G. Berto, P. Camera, F. Bianchi, C. Ambrogio, P. Claus, and F. Di Cunto. 2012. PPP4R2 regulates neuronal cell differentiation and survival, functionally cooperating with SMN. Eur. J. Cell Biol. 91:662-674. https://doi.org/10.1016/j.ejcb.2012.03.002
- Bray, M. S., J. M. Hagberg, L. Perusse, T. Rankinen, S. M. Roth, B. Wolfarth, and C. Bouchard. 2009. The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med. Sci. Sports Exerc. 41:34-72.
- Gaffney, B. and E. P. Cunningham. 1988. Estimation of genetic trend in racing performance of thoroughbred horses. Nature 332:722-724. https://doi.org/10.1038/332722a0
- Goldstein, J. L. and M. S. Brown. 1990. Regulation of the mevalonate pathway. Nature 343:425-430. https://doi.org/10.1038/343425a0
- Grozdanov, P. N., S. Roy, N. Kittur, and U. T. Meier. 2009. SHQ1 is required prior to NAF1 for assembly of H/ACA small nucleolar and telomerase RNPs. RNA 15:1188-1197. https://doi.org/10.1261/rna.1532109
- Gu, J., D. MacHugh, B. McGivney, S. Park, L. Katz, and E. Hill. 2010. Association of sequence variants in CKM (creatine kinase, muscle) and COX4I2 (cytochrome c oxidase, subunit 4, isoform 2) genes with racing performance in Thoroughbred horses. Equine Vet. J. 42:569-575. https://doi.org/10.1111/j.2042-3306.2010.00181.x
- Gu, J., N. Orr, S. D. Park, L. M. Katz, G. Sulimova, D. E. MacHugh, and E. W. Hill. 2009. A genome scan for positive selection in thoroughbred horses. PloS one 4(6):e5767. https://doi.org/10.1371/journal.pone.0005767
- Hill, E. W., D. G. Bradley, M. Al-Barody, O. Ertugrul, R. K. Splan, I. Zakharov, and E. P. Cunningham. 2002. History and integrity of thoroughbred dam lines revealed in equine mtDNA variation. Anim. Genet. 33:287-294. https://doi.org/10.1046/j.1365-2052.2002.00870.x
- Hill, E. W., S. S. Eivers, B. A. McGivney, R. G. Fonseca, J. Gu, N. A. Smith, J. A. Browne, D. E. MacHugh, and L. M. Katz. 2010a. Moderate and high intensity sprint exercise induce differential responses in COX4I2 and PDK4 gene expression in Thoroughbred horse skeletal muscle. Equine Vet. J. 42:576-581.
- Hill, E. W., J. Gu, B. A. McGivney, and D. E. MacHugh. 2010b. Targets of selection in the Thoroughbred genome contain exercise-relevant gene SNPs associated with elite racecourse performance. Anim. Genet. 41:56-63. https://doi.org/10.1111/j.1365-2052.2010.02104.x
- Hill, E. W., J. Gu, S. S. Eivers, R. G. Fonseca, B. A. McGivney, P. Govindarajan, N. Orr, L. M. Katz, and D. MacHugh. 2010c. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses. PLoS One 5:(1) e8645. https://doi.org/10.1371/journal.pone.0008645
- Hill, E. W., B. A. McGivney, J. Gu, R. Whiston, and D. E. MacHugh. 2010d. A genome-wide SNP-association study confirms a sequence variant (g. 66493737C> T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genomics 11:552. https://doi.org/10.1186/1471-2164-11-552
- Jelinsky, S. A., J. Archambault, L. Li, and H. Seeherman. 2010. Tendon-selective genes identified from rat and human musculoskeletal tissues. J. Orthop. Res. 28:289-297.
- Jorgensen, T. J., I. Ruczinski, B. Kessing, M. W. Smith, Y. Y. Shugart, and A. J. Alberg. 2009. Hypothesis-driven candidate gene association studies: practical design and analytical considerations. Am. J. Epidemiol. 170:986-993. https://doi.org/10.1093/aje/kwp242
- Kim, J., T. Lowe, and T. Hoppe. 2008. Protein quality control gets muscle into shape. Trends Cell Biol. 18:264-272. https://doi.org/10.1016/j.tcb.2008.03.007
- Kimball, S. R., T. C. Vary, and L. S. Jefferson. 1994. Regulation of protein synthesis by insulin. Ann. Rev. Physiol. 56:321-348. https://doi.org/10.1146/annurev.ph.56.030194.001541
- Ko, J.-A., Y. Kimura, K. Matsuura, H. Yamamoto, T. Gondo, and M. Inui. 2006. PDZRN3 (LNX3, SEMCAP3) is required for the differentiation of C2C12 myoblasts into myotubes. J. Cell Sci. 119:5106-5113. https://doi.org/10.1242/jcs.03290
- Liscurn, L. 2002. Cholesterol biosynthesis. New Comprehensive Biochemistry 36:409-431. https://doi.org/10.1016/S0167-7306(02)36017-4
- Moritsu, Y., H. Funakoshi, and S. Ichikawa. 1994. Genetic evaluation of sires and environmental factors influencing best racing times of Thoroughbred horses in Japan. J. Equine Sci. 5:53-58. https://doi.org/10.1294/jes.5.53
- Moschella, M. C., J. Watras, T. Jayaraman, and A. R. Marks. 1995. Inositol 1, 4, 5-trisphosphate receptor in skeletal muscle: differential expression in myofibres. J. Muscle Res. Cell Motil. 16:390-400. https://doi.org/10.1007/BF00114504
- Mota, M. D. S., A. R. Abrahao, and H. N. Oliveira. 2005. Genetic and environmental parameters for racing time at different distances in Brazilian Thoroughbreds. J. Anim. Breed. Genet. 122:393-399. https://doi.org/10.1111/j.1439-0388.2005.00551.x
- Myers, A. J., J. R. Gibbs, J. A. Webster, K. Rohrer, A. Zhao, L. Marlowe, M. Kaleem, D. Leung, L. Bryden, P. Nath et al. 2007. A survey of genetic human cortical gene expression. Nat. Genet. 39:1494-1499. https://doi.org/10.1038/ng.2007.16
- O'Connor, M. S., M. E. Carlson, and I. M. Conboy. 2009. Differentiation rather than aging of muscle stem cells abolishes their telomerase activity. Biotechnol. Prog. 25:1130-1137. https://doi.org/10.1002/btpr.223
- Oki, H., Y. Sasaki, and R. L. Willham. 1994. Genetics of racing performance in the Japanese Thoroughbred horse. J. Anim. Breed, Genet. 111:128-137. https://doi.org/10.1111/j.1439-0388.1994.tb00446.x
- Ooms, L., K. Horan, P. Rahman, G. Seaton, R. Gurung, D. Kethesparan, and C. Mitchell. 2009. The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem. J. 419:29-49. https://doi.org/10.1042/BJ20081673
- Park, J.-E., J.-R. Lee, S. Oh, J. W. Lee, H.-S. Oh, and H. Kim. 2011. Principal components analysis applied to genetic evaluation of racing performance of Thoroughbred race horses in Korea. Livest. Sci. 135:293-299. https://doi.org/10.1016/j.livsci.2010.07.014
- Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. W. De Bakker, M. J. Daly, and P. C. Sham. 2007. PLINK: a tool set for wholegenome association and population-based linkage analyses. Am. J. Hum. Genet. 81:559-575. https://doi.org/10.1086/519795
- Richards, J. B., D. Waterworth, S. O'Rahilly, M.-F. Hivert, R. J. F. Loos, J. R. B. Perry, T. Tanaka, N. J. Timpson, R. K. Semple, N. Soranzo et al. 2009. A genome-wide association study reveals variants in ARL15 that influence adiponectin levels. PLoS Genet. 5(12):e1000768. https://doi.org/10.1371/journal.pgen.1000768
- Skol, A. D., L. J. Scott, G. R. Abecasis, and M. Boehnke. 2006. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat. Genet. 38:209-213. https://doi.org/10.1038/ng1706
- Skol, A. D., L. J. Scott, G. R. Abecasis, and M. Boehnke. 2007. Optimal designs for two-stage genome-wide association studies. Genet. Epidemiol. 31:776-788. https://doi.org/10.1002/gepi.20240
- Szustakowski, J. D., J.-H. Lee, C. A. Marrese, P. A. Kosinski, N. Nirmala, and D. M. Kemp. 2006. Identification of novel pathway regulation during myogenic differentiation. Genomics 87:129-138. https://doi.org/10.1016/j.ygeno.2005.08.009
- Thomas, D., R. Xie, and M. Gebregziabher. 2004. Two-Stage sampling designs for gene association studies. Genet. Epidemiol. 27:401-414. https://doi.org/10.1002/gepi.20047
- Tozaki, T., E. W. Hill, K. Hirota, H. Kakoi, H. Gawahara, T. Miyake, S. Sugita, T. Hasegawa, N. Ishida, Y. Nakano, and M. Kurosawa. 2012. A cohort study of racing performance in Japanese Thoroughbred racehorses using genome information on ECA18. Anim. Genet. 43:42-52. https://doi.org/10.1111/j.1365-2052.2011.02201.x
- Tozaki, T., T. Miyake, H. Kakoi, H. Gawahara, S. Sugita, T. Hasegawa, N. Ishida, K. Hirota, and Y. Nakano. 2010. A genome-wide association study for racing performances in Thoroughbreds clarifies a candidate region near the MSTN gene. Anim. Genet. 41:28-35. https://doi.org/10.1111/j.1365-2052.2010.02095.x
- Velleman, S. G., J. Shin, X. Li, and Y. Song. 2012. Review: The skeletal muscle extracellular matrix: Possible roles in the regulation of muscle development and growth. Can. J. Anim. Sci. 92:1-10. https://doi.org/10.4141/cjas2011-098
Cited by
- Foundations of performance – factors that contribute to excellence in equine exercise vol.13, pp.3, 2017, https://doi.org/10.3920/CEP170022
- A genome-wide association study for harness racing success in the Norwegian-Swedish coldblooded trotter reveals genes for learning and energy metabolism vol.19, pp.1, 2018, https://doi.org/10.1186/s12863-018-0670-3
- Exome sequencing in genomic regions related to racing performance of Quarter Horses vol.60, pp.1, 2019, https://doi.org/10.1007/s13353-019-00483-1
- Association of low race performance with mtDNA haplogroup L3b of Australian thoroughbred horses vol.29, pp.2, 2015, https://doi.org/10.1080/24701394.2016.1278535
- Selection signatures in four German warmblood horse breeds: Tracing breeding history in the modern sport horse vol.14, pp.4, 2015, https://doi.org/10.1371/journal.pone.0215913
- Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post‐genome era vol.50, pp.6, 2015, https://doi.org/10.1111/age.12857
- Identification and Functional Annotation of Genes Related to Horses’ Performance: From GWAS to Post-GWAS vol.10, pp.7, 2015, https://doi.org/10.3390/ani10071173
- Exome analysis and functional classification of identified variants in racing Quarter Horses vol.51, pp.5, 2015, https://doi.org/10.1111/age.12976
- Rare and common variant discovery by whole-genome sequencing of 101 Thoroughbred racehorses vol.11, pp.1, 2015, https://doi.org/10.1038/s41598-021-95669-1