DOI QR코드

DOI QR Code

환기장치와 필터를 활용한 미세먼지 제거특성 조사

Characterization of Fine Dust Collection Using a Filter Ventilation

  • Jeon, Tae-Yeong (Department of Environmental Engineering, Chungbuk National University) ;
  • Kim, Jae-Yong (Department of Environmental Engineering, Chungbuk National University)
  • 투고 : 2015.02.24
  • 심사 : 2015.03.24
  • 발행 : 2015.04.10

초록

본 연구에서는 폐암을 유발하는 발암물질이며 다양한 문제의 원인이 되고 있는 유해물질인 미세먼지 제거특성을 조사하였다. 변수로는 습도, 초기미세먼지 주입량, 유속을 고려하였다. 실험결과 습도가 높은 경우 제거에 소요되는 시간동안 평균 농도는 낮아지지만, 최종농도에는 큰 차이가 없었다. 세 가지 초기미세먼지주입량의 변화는 모두 비슷한 제거경향을 나타내었다. 또한 유속이 0.6 m/s에서 0.3 m/s로 변할 경우 제거소요시간이 약 1.4배 증가하는 결과가 관찰되었다. 본 연구에서는 습도, 미세먼지 주입량, 유속 중 미세먼지 제거에 가장 큰 변화를 보이는 것은 유속으로 관찰되었다.

In this study, we examined the removal characteristics of suspended particulate matters which are one of carcinogens to cause lung cancer. The fine dust capture by a pilot scale filtration system depends on several important variables such as humidity, initial fine dust injection volume, and flow rate. The average concentration of particulate matters in the test chamber decreased, but the ultimate collection efficiency did not change during the filtration under high humidity, compared to those of using ambient conditions The initial injection amount of fine dust did not influence the particle capturing efficiency. When the flow rate reduced from 0.6 m/s to 0.3 m/s, the dust collection time increased approximately 1.4 times. Among all variables tested, the flow rate showed the most significant effect on the removal efficiency of fine particulate matter.

키워드

참고문헌

  1. Richard W. Boubel, Donald L. Fox, D. Bruce Turner, and Arthur C. Stern, Fundamentals of Air Pollution, 3rd ed. 203-206, Academic Press, California, USA (1994).
  2. Y. H. Yoon, J. C. Joo, H. S. Ahn, and S. H. Nam, Analyses of the current market trend and research status of indoor air quality control to develop an electrostatic force-based dust control technique, J. Kor. Academia-Industrial. Co. Soc., 14(12), 6610-6617 (2013). https://doi.org/10.5762/KAIS.2013.14.12.6610
  3. J. S. Park, C. H. Kim, J. J. Lee, J. H. Kim, U. H. Hwang, and S. D. Kim, A study on The Chemical Mass Composition of particle Matter in Seoul, J. Kor. Soc. Urban. Eng., 10(3), 293-303 (2010).
  4. O. O. Hanninen, E. Lebret, V. Ilacqua, K. Katsouyanni, N. Kunzli, R. J. Sram, and M. Jantunen, Infiltration ofambient PM2.5 and levels of indoor generated non-ETS PM2.5 in residences of four European cities, Atmos. Environ, 38, 6411-6423 (2004). https://doi.org/10.1016/j.atmosenv.2004.07.015
  5. G. Gramotnev and Z. Ristovski, Experimentalinvestigation of ultra- fine particle size distribution neara busy road, Atmos. Environ., 38(12), 1767-1776 (2004). https://doi.org/10.1016/j.atmosenv.2003.12.028
  6. D. F. S. Natucsh, J. R. Wallace, and Jr. C. A. Evans, Toxic trace elements: preferential concentration in respirable particles, Science, 183, 202-204 (1974). https://doi.org/10.1126/science.183.4121.202
  7. D. W. Dockery and III C. A. Pope, Acute respiratory effects of particulate air pollution, Annu. Rev. Publ. Health, 15, 107-132 (1994). https://doi.org/10.1146/annurev.pu.15.050194.000543
  8. B. H. Nam, I. J. Hwang, and D, S. Kim, Pattern Classification of PM-10 in the Indoor Environment Using Diskoint Principal Component Anlysis, J. Kor. Soc. Atmos. Environ., 18, 25-37 (2002).
  9. T. Larson, T. Gould, C. Simpson, L.-J. S. Liu, C. Claiborn, and J. Lewtas, Source apportionment of indoor, oudoor, and personal PM2.5 in Seattle, Washington, using positive matrix factorization, J. Air Waste Manage., 54, 1175-1187 (2004). https://doi.org/10.1080/10473289.2004.10470976
  10. M. D. Geller, M. Chang, C. Sioutas, B. D. Ostro, and M. J. Lipsett, Indoor/outdoor Relationship and chemical composition of fine and coarse particles in the southern California deserts, Atmos. Environ., 36, 1099-1110 (2002). https://doi.org/10.1016/S1352-2310(01)00340-5
  11. D. A. Olson, J. Tirlington, R. M. Duvall, S. R. McDow, C. D. Stevens, and R. Williams, Indoor and outdoor concentrations of organic and inorganic molecular markers: Souce apportionment of PM.25 using low-volume samples" Atmos. Environ., 42, 1742-1751 (2008). https://doi.org/10.1016/j.atmosenv.2007.11.035
  12. J. M. Lim, J. H. Jeong, J. H. Lee, J. H. Moon, Y. S. Ching, and K. H. Kim, The analysis of PM2.5 and associated elements and their indoor/outdoor pollution status in an urban area, Indoor Air, 21, 145-155 (2011). https://doi.org/10.1111/j.1600-0668.2010.00691.x
  13. J. M. Lim and J. H. Lee, Indoor Air Quality Pollution of PM2.5 and Associated Trace Elements Affected by Environmental Tobacco Smoke. J. Kor. Soc. Envion. Eng., 36(5), 317-324 (2014). https://doi.org/10.4491/KSEE.2014.36.5.317
  14. Josep Grau-Bove and Matija Strlic, Fine particulate matter in indoor cultural heritage: a literature review, Herit Sci., 1(8), 1-17 (2013). https://doi.org/10.1186/2050-7445-1-1
  15. Ling-Chuan Guo, Lian-Jun Bao, Juan-Wen She, and Eddy Y. Zeng, Significance of wet deposition to removal of atmospheric particulate matter and polycyclic aromatic hydrocarbons: a case study in Guangzhou, China, Atmos. Environ., 83, 136-144 (2014). https://doi.org/10.1016/j.atmosenv.2013.11.012

피인용 문헌

  1. Characteristics of a Filter Module Adsorption for Fine Dust Removal on Road vol.39, pp.1, 2017, https://doi.org/10.4491/KSEE.2017.39.1.19
  2. 시판용 TiO2 광촉매의 doping 성분에 따른 비주류 담배연기의 유해물질 제거효율 vol.28, pp.5, 2015, https://doi.org/10.14478/ace.2017.1076
  3. 도로 발생 분진의 방음벽 충돌 CFD 분석 vol.19, pp.6, 2015, https://doi.org/10.7855/ijhe.2017.19.6.031
  4. Field method to evaluate particulate matter removal efficiency of heat recovery ventilation systems for apartment buildings vol.19, pp.1, 2015, https://doi.org/10.15250/joie.2020.19.1.58