DOI QR코드

DOI QR Code

다양한 상용 TiO2 담체의 물리화학적 특성과 Ce/Ti 촉매의 SCR 반응활성과의 상관성 연구

Correlation between Physicochemical Properties of Various Commercial TiO2 Supports and NH3-SCR Activities of Ce/Ti Catalysts

  • 권동욱 (경기대학교 일반대학원 환경에너지공학과) ;
  • 홍성창 (경기대학교 일반대학원 환경에너지공학과)
  • Kwon, Dong Wook (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Engineering, Graduate School of Kyonggi University)
  • 투고 : 2015.01.26
  • 심사 : 2015.02.12
  • 발행 : 2015.04.10

초록

다양한 상용 $TiO_2$ 담체를 이용한 Ce/Ti 촉매를 습윤함침법으로 제조하여 $TiO_2$의 물리화학적 특성 및 선택적촉매환원(SCR) 반응활성과의 상관관계에 관하여 연구하였다. $TiO_2$의 특성은 XRD, BET, XPS 및 pH와 같은 물리화학적 분석을 통해 수행되었다. Ce/Ti 촉매는 $TiO_2$의 물리화학적 특성에 따라 각기 다른 SCR 활성을 나타내었다. $TiO_2$의 비표면적이 증가됨에 따라 우수한 활성을 나타내었다. CeOx surface density의 경우 $2.5{\sim}14.5CeOx/nm^2$의 범위에서 우수한 활성을 보였으며, $14.5CeOx/nm^2$ 이상에서는 활성이 감소하는 경향을 나타내었다. $TiO_2$의 O/Ti mole ratio는 1.32~1.79의 범위에서 우수한 활성을 나타내었으며, $TiO_2$의 pH의 경우 SCR 활성과 영향이 없음을 확인하였다. 우수한 SCR 활성을 위해서는 세리아 산화물을 높은 비표면적 및 일정 O/Ti mole ratio를 가진 $TiO_2$에 담지되어야 하고 고분산된 세리아 산화물에 의한 낮은 CeOx surface density를 나타내는 촉매를 제조하여야 한다.

Ceria supported on various commercial $TiO_2$ catalysts were prepared by wet-impregnation method. We confirmed that the correlation between physicochemical properties of $TiO_2$ supports and SCR activities. Physicochemical properties of the various $TiO_2$ were evaluated using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, X-ray photoelectron spectroscopy (XPS), and pH analysis. Ce/Ti catalyst exhibited different SCR activities with respect to physicochemical properties of $TiO_2$. An excellent activity was obtained as the surface area of $TiO_2$ increased. In the case of CeOx surface density, the excellent activity in a range of $2.5{\sim}14.5CeOx/nm^2$ was achieved and the activity tended to decrease above $14.5CeOx/nm^2$. The O/Ti mole ratio of $TiO_2$ in the range of 1.32 to 1.79 showed an excellent SCR activity. It was also confirmed that the pH of the $TiO_2$ has no effects on the SCR activity. In order to achieve excellent SCR activities, ceria oxide should be supported on $TiO_2$ possessing a high specific surface area and certain O/Ti mole ratio. In addition, the catalyst with the low CeOx surface density resulted from the high dispersed ceria oxide should be prepared.

키워드

참고문헌

  1. G. Qi and R.T. Yang, Performance and kinetics study for low-temperature SCR of NO with $NH_{3}$ over MnOx-$CeO_{2}$ catalyst, J. Catal. G. Qi, and R.T. Yang, Performance and kinetics study for low-temperature SCR of NO with $NH_{3}$ over MnOx-$CeO_{2}$ catalyst, J. Catal., 217, 434-441 (2003). https://doi.org/10.1016/S0021-9517(03)00081-2
  2. P. S. Metkar, M. P. Harold, and V. Balakotaiah, Selective catalytic reduction of NOx on combined Fe- and Cu-zeolite monolithic catalysts: Sequential and dual layer configurations, Appl. Catal. B: Environ., 111-112, 67-80 (2012). https://doi.org/10.1016/j.apcatb.2011.09.019
  3. S. Roy, M. S. Hedge, and G. Madras, Catalysis for NOx abatement, Appl. Energy, 86, 2283-2297 (2009). https://doi.org/10.1016/j.apenergy.2009.03.022
  4. P. Forzatti, Present status, and perspectives in de-NOx SCR catalysis, Appl. Catal. A: Gen., 222, 221-236 (2001). https://doi.org/10.1016/S0926-860X(01)00832-8
  5. H. Karge, Handbook of Heterogeneous Catalysis, 2nd edn, 8 (2008).
  6. X. Gao, Y. Jiang, Y. Zhong, Z. Luo, and K. Cen, The activity and characterization of $CeO_{2}$-$TiO_{2}$ catalysts prepared by the sol-gel method for selective catalytic reduction of NO with $NH_{3}$, J. Hazard. Mater., 174, 734-739 (2010). https://doi.org/10.1016/j.jhazmat.2009.09.112
  7. H. Chang, J. Li, J. Yuan, L. Chen, Y. Dai, H. Arandiyan, J. Xu, and J. Hao, Ge, Mn-doped $CeO_{2}$-$WO_{3}$ catalysts for $NH_{3}$-SCR of NOx: Effects of $SO_{2}$ and $H_{2}$ regeneration, Catal. Today, 201, 139-144 (2013). https://doi.org/10.1016/j.cattod.2012.03.027
  8. W. Shan, F. Liu, H. He, X. Shi, and C. Zhang, An environmentally- benign $CeO_{2}$-$TiO_{2}$ catalyst for the selective catalytic reduction of NOx with $NH_{3}$ in simulated diesel exhaust, Catal. Today, 184, 160-165 (2012). https://doi.org/10.1016/j.cattod.2011.11.013
  9. W. Q. Xu, Y. B. Yu, C. B. Zhang, and H. He, Selective catalytic reduction of NO by $NH_{3}$ over a Ce/$TiO_{2}$ catalyst, Catal. Commun., 9, 1453-1457 (2008). https://doi.org/10.1016/j.catcom.2007.12.012
  10. Y. S. Shen, S. M. Zhu, T. Qiu, and S. B. Shen, A novel catalyst of $CeO_{2}$/$Al_2O_3$ for selective catalytic reduction of NO by $NH_{3}$, Catal. Commun., 11, 20-23 (2009). https://doi.org/10.1016/j.catcom.2009.08.001
  11. G. Qi, R. T. Yang, and R. Chang, MnOx-$CeO_{2}$ mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with $NH_{3}$ at low temperatures, Appl. Catal. B: Environ., 51, 93-106 (2004). https://doi.org/10.1016/j.apcatb.2004.01.023
  12. Z. Wang, Z. Qu, X. Quan, and H. Wang, Selective catalytic oxidation of ammonia to nitrogen over ceria-zirconia mixed oxides, Appl. Catal. A: Gen., 411-412, 131-138 (2012). https://doi.org/10.1016/j.apcata.2011.10.030
  13. C. Liu, L. Chen, J. Li, L. Ma, H. Arandiyan, Y. Du, J. Xu, and J. Hao, Enhancement of activity and sulfur resistance of $CeO_{2}$ supported on $TiO_{2}$-$SiO_{2}$ for the selective catalytic reduction of NO by $NH_{3}$, Environ. Sci. Technol., 46, 6182-6189 (2012). https://doi.org/10.1021/es3001773
  14. Y. Peng, J. Li, L. Chen, J. Chen, J. Han, H. Zhang, and W. Han, Alkali metal poisoning of a $CeO_{2}$-$WO_{3}$ catalyst used in the selective catalytic reduction of NOx with $NH_{3}$: an experimental and theoretical study, Environ. Sci. Technol., 46, 2864-2869 (2012). https://doi.org/10.1021/es203619w
  15. C. Liang, L. Junhua, G. Maofa, M. Lei, and C. Huazhen, Mechanism of Selective Catalytic Reduction of NOx with $NH_{3}$ over $CeO_{2}$-$WO_{3}$ Catalysts, Chin. J. Catal., 32, 836-841 (2011). https://doi.org/10.1016/S1872-2067(10)60195-7
  16. G. Zhou, B. Zhong, W. Wang, X. Guan, B. Huang, D. Ye, and H. Wu, In situ DRIFTS study of NO reduction by NH over Fe-Ce-Mn/ZSM-5 catalysts, Catal. Today, 175, 157-163 (2011). https://doi.org/10.1016/j.cattod.2011.06.004
  17. B. S. Shirke, P. V. Korake, P. P. Hankare, S. R. Bamane, and K. M. Garadkar, Synthesis and characterization of pure anatase $TiO_{2}$ nanoparticles, J. Mater. Sci., 22, 821-824 (2011).
  18. X. Meng, H. Huang, H. Weng, and L. Shi, Ni/ZnO-based Adsorbents Supported on $Al_{2}O_{3}$, $SiO_{2}$, $TiO_{2}$,$ZrO_{2}$: A Comparison for Desulfurization of Model Gasoline by Reactive Adsorption, Bull. Korean Chem. Soc., 33, 3213-3217 (2012). https://doi.org/10.5012/bkcs.2012.33.10.3213
  19. R. D. Shannon and J. A. Pask, Kinetics of the Anatase-Rutile Transformation, J. Am. Ceram. Soc., 48, 391-398 (1965). https://doi.org/10.1111/j.1151-2916.1965.tb14774.x
  20. P. G. Smirniotis, P. M. Sreekanth, D. A. Pena, and R. G. Jenkins, Manganese oxide catalysts supported on $TiO_{2}$, $Al_2O_3$, and $SiO_{2}$: A comparison for low-temperature SCR of NO with $NH_{3}$, Ind. Eng. Chem. Res., 45, 6436-6443 (2006). https://doi.org/10.1021/ie060484t
  21. F. Kapteijn, A. D. V. Langeveld, J. A. Moulijn, and A. Andrein, Alumina-Supported Manganese Oxide Catalysts: I. Characterization: Effect of Precursor and Loading, J. Catal., 150, 94-104 (1994). https://doi.org/10.1006/jcat.1994.1325
  22. G. Madia, M. Elsener, M. Koebel, F. Raimondi, and A. Wokaun, Thermal stability of vanadia-tungsta-titania catalysts in the SCR process, Appl. Catal. B: Environ., 39, 181-190 (2002). https://doi.org/10.1016/S0926-3373(02)00099-1
  23. I. E. Wachs, Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts, Catal. Today, 27, 437-455 (1996). https://doi.org/10.1016/0920-5861(95)00203-0
  24. I. Giakoumelou, C. Fountzoula, C. Kordulis, and S. Boghosian, Molecular structure and catalytic activity of $V_{2}O_{5}$/$TiO_{2}$ catalysts for the SCR of NO by $NH_{3}$: In situ Raman spectra in the presence of $O_{2}$, $NH_{3}$, NO, $H_{2}$, $H_{2}O$, and $SO_{2}$, J. Catal., 239, 1-12 (2006). https://doi.org/10.1016/j.jcat.2006.01.019
  25. P. W. Seo, S. P. Cho, S. H. Hong, and S. C. Hong, The influence of lattice oxygen in titania on selective catalytic reduction in the low temperature region, Appl. Catal. A: Gen., 380, 21-27 (2010). https://doi.org/10.1016/j.apcata.2010.03.016
  26. F. L. Toma, G. Bertrand, S. Begin, C. Meunier, O. Barres, D. Klein, and C. Coddet, Microstructure and environmental functionalities of $TiO_{2}$-supported photocatalysts obtained by suspension plasma spraying, Appl. Catal. B: Environ., 68, 74-84 (2006). https://doi.org/10.1016/j.apcatb.2006.07.009
  27. I. Bertoti, M. Mohai, J. L. Sullivan, and S. O. Saied, Surface characterisation of plasma-nitrided titanium: an XPS study, Appl. Surf. Sci., 84, 357-371 (1995). https://doi.org/10.1016/0169-4332(94)00545-1
  28. T. W. Chien and H. Chu, Removal of $SO_{2}$ and NO from flue gas by wet scrubbing using an aqueous $NaClO_{2}$ solution, J. Hazard. Mater., 80, 43-57 (2000). https://doi.org/10.1016/S0304-3894(00)00274-0
  29. G. D. Panagiotou, T. Petsi, K. Bourikas, C. Kordulis, and A. Lycourghiotis, The interfacial chemistry of the impregnation step involved in the preparation of tungsten(VI) supported titania catalysts, J. Catal., 262, 266-279 (2009). https://doi.org/10.1016/j.jcat.2009.01.003
  30. G. D. Panagiotou, T. Petsi, K. Bourikas, A. G. Kalampounias, S. Boghosian, C. Kordulis, and A. Lycourghiotis, Interfacial impregnation chemistry in the synthesis of molybdenum catalysts supported on titania, J. Phys. Chem. C, 114, 11868-11879 (2010). https://doi.org/10.1021/jp101333t

피인용 문헌

  1. 상용 SCR 촉매의 바나듐 표면밀도가 반응활성 및 SO2 내구성에 미치는 영향연구 vol.28, pp.2, 2015, https://doi.org/10.14478/ace.2016.1120