DOI QR코드

DOI QR Code

Preparation of Cr2O3/AP Composites and their Thermal Decomposition Characteristics

Cr2O3/AP 복합체 제조 및 그 열분해 특성

  • Jung, Jae-Yun (Department of Chemical and Bimolecular Engineering, Sogang University) ;
  • Kim, Jae-Kyeong (Department of Chemical and Bimolecular Engineering, Sogang University) ;
  • Shim, Hong-Min (Department of Chemical and Bimolecular Engineering, Sogang University) ;
  • Kim, Hyoun-Soo (Agency for Defense Development) ;
  • Koo, Kee-Kahb (Department of Chemical and Bimolecular Engineering, Sogang University)
  • 정재윤 (서강대학교 화공생명공학과) ;
  • 김재경 (서강대학교 화공생명공학과) ;
  • 심홍민 (서강대학교 화공생명공학과) ;
  • 김현수 (국방과학연구소) ;
  • 구기갑 (서강대학교 화공생명공학과)
  • Received : 2014.12.09
  • Accepted : 2015.01.05
  • Published : 2015.04.10

Abstract

$Cr_2O_3/AP$ (ammonium perchlorate) energetic composites were prepared by a method of solvent/anti-solvent. XRD analysis revealed that the crystalline structure of AP in $Cr_2O_3/AP$ composites is the same as that of pure AP. SEM photomicrograph shows that an average size of cuboid $Cr_2O_3/AP$ composites is approximately $2.5{\mu}m$. TGA analysis shows that the addition of submicron $Cr_2O_3$ particles into AP lowers the HTD (high-temperature decomposition) compared to that of neat AP and the activation energy of the $Cr_2O_3/AP$ composites was calculated by the isoconversional Starlink method. Considering changes in the activation energy, the decomposition reaction mechanism of AP was suggested as follows; the decomposition with the formation of nucleation sites renders formation of porous structure in the composites up to conversion of about 0.25 and after further conversion of over 0.3, it seems that decomposition reaction vigorously takes place rather than sublimation of AP.

Solvent/anti-solvent법으로 제조된 $Cr_2O_3$/과염소산암모늄 에너지 복합체의 X선 회절 분석 결과 $Cr_2O_3$이 내포된 과염소산암모늄 입자는 순수한 과염소산암모늄과 동일한 결정 구조로 확인되었으며 주사전자현미경 사진으로부터 측정된 입방체 형상 결정의 평균입도는 약 $2.5{\mu}m$이었다. 복합체의 열중량 분석으로부터 $Cr_2O_3$에 의해 과염소산암모늄의 고온 분해 영역 분해 온도가 낮아짐을 알 수 있었고, 복합체 분해 반응의 활성화 에너지는 Starlink 방법에 의해 계산되었다. 이와 같은 활성화 에너지의 변화로 인하여, 과염소산암모늄의 분해 반응 메카니즘은 전환율 약 0.25까지는 주로 핵생성에 의한 다공성 구조가 생성되면서 분해되는 것으로 보이며, 전환율 0.3 이상에서는 과염소산암모늄의 격렬한 분해 반응이 승화보다 우선하는 것으로 보인다.

Keywords

References

  1. R. L. Dotson, A novel electrochemical process for the production of ammonium perchlorate, J. Appl. Electrochem., 23, 897-904 (1993). https://doi.org/10.1007/BF00251024
  2. P. W. M. Jacobs and H. M. Whitehead, Thermal decomposition and combustion of ammonium perchlorate, Chem. Rev., 69, 551-590 (1969). https://doi.org/10.1021/cr60260a005
  3. N. Kubota, T. Kuwahara, S. Miyazaki, K. Uchiyama, and N. Hirata, Combustion wave structure of ammonium perchlorate composite propellants, J. Propul. Power., 2, 296-300 (1986). https://doi.org/10.2514/3.22885
  4. S. Krishnan, S. R. Chakravarthy, and S. K. Athinan, Propellant and Explosive Technology, 51-55, Allied Publishers Ltd, Chennai, India (1998).
  5. E. W. Price, J. K. Sambamurthy, R, K. Sigman, and R. R. Panyam, Combustion of ammonium perchlorate polymer sandwitches, Combust. Flame, 63, 381-413 (1986). https://doi.org/10.1016/0010-2180(86)90007-6
  6. K. Kishore and G. Prasad, A review of decomposition/deflagration of oxidizer and binders in composite solid propellants, Defence Sci. J., 29, 39-54 (1979).
  7. R. M. Muthaiah, T. L. Verghese, S. S. Rao, K. N. Ninan, and V. N. Krishnamurthy, Realisation of an eco-friendly solid propellants based on HTPB-HMX-AP system for launch vehicle applications, Propell. Explos. Pyrot., 23, 90-93 (1998). https://doi.org/10.1002/(SICI)1521-4087(199804)23:2<90::AID-PREP90>3.0.CO;2-#
  8. K. Engelen, M. H. Lefebvre, and A. Hubin, Properties of a gas-generating composition related to the particle size of the oxidizer, Propell. Explos. Pyrot., 27, 290-299 (2002). https://doi.org/10.1002/1521-4087(200211)27:5<290::AID-PREP290>3.0.CO;2-4
  9. V. V. Boldyrev, Thermal decomposition of ammonium perchlorate, Thermochim. Acta, 443, 1-36 (2006). https://doi.org/10.1016/j.tca.2005.11.038
  10. S. Chaturvedi and P. N. Dave, A Review on the use of Nanometals as Catalysts for the Thermal Decomposition of Ammonium Perchlorate, J. Saudi Chem. Soc., 17, 135-149 (2013). https://doi.org/10.1016/j.jscs.2011.05.009
  11. A. Hermony and A. Salmon, The Catalytic Decomposition of Ammonium Perchlorate, 8th Symposium on Combustion, August 28-September 3, Pasadena, USA (1960).
  12. F. Solymosi, Initiation of Ammonium Perchlorate-ignition by Chromic Oxide-Titanium Dioxide Catalysts, Combust. Flame, 9, 141-148 (1965). https://doi.org/10.1016/0010-2180(65)90060-X
  13. W. A. Rosser, S. H. Inami, and H. Wise, Thermal Decomposition of Ammonium Perchlorate, Combust. Flame, 12, 427-435 (1968). https://doi.org/10.1016/0010-2180(68)90054-0
  14. F. Solymosi, L. Gera, and S. Borcsok, Catalytic Pyrolysis of $HClO_{4}$ and its Relation to the Decomposition and Combustion of $NH_{4}ClO_{4}$, 13th International Symposium on Combustion, August 23-29, Utah, USA (1970).
  15. S. A. Halawy and M. A. Mohamed, Role of The Acidic-Basic Characters of Some Metal Oxides in The Pyrolysis of Ammonium Perchlorate, J. Therm. Anal. Chem., 55, 833-840 (1999). https://doi.org/10.1023/A:1010129732656
  16. A. Burcat, A. Caimon, I. Pelly, and M. Steinberg, A Study on the Mechanism of Thermal Decomposition of Ammonium Perchlorate, Isr. J. Chem., 6, 859-864 (1968). https://doi.org/10.1002/ijch.196800109
  17. I. P. S. Kapoor, P. Srivastava, and G. Singh, Nanocrystalline Transition Metal Oxides as Catalysts in the Thermal Decomposition of Ammonium Perchlorate, Propell. Explos. Pyrot., 34, 351-356 (2009). https://doi.org/10.1002/prep.200800025
  18. A. A. Shidlovskiy, L. F. Shmagin, and V. V. Bulanova, Effect of Certain Additives on The Thermal Decomposition of Ammonium Perchlorate, AD0648145, Redstone Scientific Information Center, Redstone Arsenal, USA (1967).
  19. A. A. Boldyreva, B. N. Berzukov, and V. V. Boldyrev, Effect of Additives on the Thermal Decomposition of Ammonium Perchlorate, J. Catal., 10, 96 (1968).
  20. H. Osada and E. Sakamoto, Thermal Decomposition of Ammonium Perchlorate, Kogyo Kayaku, 24, 236-244 (1963).
  21. K. Kuratani, Some Studies on Solid Propellants. Part I. Kinetics of Thermal Decomposition of Ammonium Perchlorate, Aeronautical Research Institute, University of Tokyo, 372, 79-101 (1962).
  22. K. Kuratani, Some Studies on Solid Propellants. Part III. Analytical Results of the Combustion Gases, Aeronautical Research Institute, University of Tokyo, 374, 115-127 (1962).
  23. F. Solymosi and S. Borcsok, Heterogeneous decomposition of perchloric acid on chromium oxide catalysts, J. Chem. Soc. A, 601-605 (1970).
  24. M. J. Starlink, The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion method, Thermochim. Acta., 404. 163-176 (2003). https://doi.org/10.1016/S0040-6031(03)00144-8
  25. J. H. Flynn and L. A. Wall, General Treatment of the Thermogravimetry of Polymers, J. Res. Nat. Bur. Stand., 70, 487-523 (1966).
  26. E. J. Mittemeijer, Analysis of the kinetics of phase transformations, J. Mater. Sci., 27, 3977-3987 (1992). https://doi.org/10.1007/BF01105093
  27. G. R. Heal, Evaluation of integral of the Arrhenius function by a series of chebyshev polynominals-use in the analysis of non-isothermal kinetics, Thermochim. Acta., 340-341, 69-76 (1999). https://doi.org/10.1016/S0040-6031(99)00254-3
  28. M. J. Starlink, A new method for the derivation of activation energies from experiments performed at constant heating rate, Thermochim. Acta, 288, 97-104 (1996). https://doi.org/10.1016/S0040-6031(96)03053-5
  29. H. M. Shim, J. Y. Jeong, J. K. Kim, H. S. Kim, and K. K. Koo, Core-Shell Etructured CuO/AP Energetic Composite and Thermal Characteristics, KIMST Spring Annual Conference, July 4-5, Jeju, Republic of Korea (2013).
  30. J. H. Kim, Y. C. Park, S. K. Seo, and T. S. Seo, Preparation of ultrafine ammonium perchlorate crystals by salting-out method, Korea Patent 10-0514343 (2005).
  31. L. Ning, Study on the Preparation of Submicrometer Ammonium Perchlorate System, MSc Thesis, Nanjing Univ. Tech. Eng., Nanjing, People's Republic of China (2013).
  32. M. L. Levinthal, G. F. Allred, and L. W. Poulter, Method of making finely particulate ammonium perchlorate, US Patent, 4,023,935 (1977).
  33. G. F. Mangum, R. E. Rogers, and E. J. Schreck, Method for Making Coated Ultra-fine Ammonium Perchlorate Particles and Product Produced Thereby, US Patent, 3,954,526 (1976).
  34. E. L. Lista, R. B. Hartupee, R. K. Manfred, and P. L. O'Neil, Alkylene imine adduct of divinylbenzene, solid rocket propellant, US Patent, 4,115,166 (1978).
  35. J. Murphy and R. Rogers, Method of making ultra-fine ammonium perchlorate particles, US Patent, 3,819,336 (1974).
  36. S. Kittaka, Isoelectric Point of $Al_{2}O_{3}$, $Cr_{2}O_{3}$ and $Fe_{2}O_{3}$, J. Colloid. Interf. Sci., 48, 327-333 (1974). https://doi.org/10.1016/0021-9797(74)90167-2
  37. K. Venkatesan, The Crystal Structure of Ammonium Perchlorate-$NH_{4}ClO_{4}$, P. Indian Acad. Sci. A., 46, 134-142 (1957).
  38. L. Li, Z. Yan, G. Q. Lu, and Z. H. Zhu, Synthesis and Structure Characterization of Chromium Oxide Prepared by Solid Thermal Decomposition Reaction, J. Phys. Chem. B., 110, 178-183 (2006). https://doi.org/10.1021/jp053810b
  39. M. W. Evans, R. B. Beyer, and L. McCulley, Initiation of Deflagration Waves at Surfaces of Ammonium Perchlorate-Copper Chromite-Carbon pellets, J. Chem. Phys., 40, 2431-2438 (1964). https://doi.org/10.1063/1.1725544
  40. G. Duan, X. Yang, J. Chen, G. Huang, L. Lu, and X. Wang, The Catalytic Effect of Nanosized MgO on the Decomposition of Ammonium Perchlorate, Powder Technol., 172, 27-29 (2007). https://doi.org/10.1016/j.powtec.2006.10.038
  41. A. G. Keenan and R. F. Siegmund, The Thermal Decomposition of Ammonium Perchlorate-A Review, AD 673542, Defense Technical Information Center, Springfield, USA (1968).
  42. S. S. Joshi, P. R. Patil, and V. N. Krishnamurthy, Thermal Decomposition of Ammonium Perchlorate in the presence of Nanosized Ferric Oxide, Defence Sci. J., 58, 721-727 (2008). https://doi.org/10.14429/dsj.58.1699
  43. L. Liu, F. Li, L. Tan, M. Li, and Y. Yi, Effects of Metal and Composite Metal Nanopowders on the Thermal Decomposition of Ammonium Perchlorate (AP) and the Ammonium Perchlorate/Hydroxyterminated Polybutadiene (AP/HTPB) Composite Solid Propellant, Chinese J. Chem. Eng., 12. 595-598 (2004).
  44. P. W. M. Jacobs and A. Russell-Jones. On the mechanism of the decomposition of ammonium perchlorate. AIAA J., 5, 829-830 (1967). https://doi.org/10.2514/3.4085
  45. A. V. Rayevskiy and G. B. Manelis, Development of Reaction Centers with Thermal Decomposition of Orthorhombic Ammonium Perchlorate amd the Role of Dislocation in This Process, FTD-MT-24-2024-74, Foreign Technology Division, Wright-Patterson Air Force Base, Dayton, USA (1974).
  46. J. W. Yoon, H. J. Kim, H. M. Jeong, and J. H. Lee, Gas Sensing Characteristics of p-type $Cr_{2}O_{3}$ and $Co_{3}O_{4}$ Nanofibers Depending on Inter-particle Connectivity, Sensor Actuat. B-Chem., 202, 263-271 (2014). https://doi.org/10.1016/j.snb.2014.05.081
  47. H. F. Johnstone and E. T. Houvouras, Low Temperature Catalytic Oxidation of Ammonia, Ind. Eng. Chem., 46, 702-708 (1954). https://doi.org/10.1021/ie50532a031
  48. O. N. Silchenkova, V. N. Korchak, and V. A. Matyshak, The Mechanism of Low-Temperature Ammonia Oxidation on Metal Oxides Accordning to the Data of Spectrokinetic Measurements, Kinet. Catal, 43, 363-371 (2002). https://doi.org/10.1023/A:1016057818280
  49. A. White, Ab Initio Computational Chemical Studies of Molecular Processes and Decomposition in Ammonium Perchlorate, DSTO-TR-1552, DSTO Systems Sciences Laboratory, Edinburgh, Australia (2004).
  50. P. W. M. Jacobs and W. L. Ng, Thermal Decomposition of Ammonium Perchlorate Single Crystals, J. Solid State Chem., 9, 315-322 (1974). https://doi.org/10.1016/0022-4596(74)90089-9
  51. S. Vyazovkin and C. A. Wight, Kinetics of Thermal Decomposition of Cubic Ammonium Perchlorate, Chem. Mater., 11, 3386-3393 (1999). https://doi.org/10.1021/cm9904382
  52. L. L. Bircumshaw and B. H. Newman, The Thermal Decomposition of Ammonium Perchlorate II. The Kinetics of the Decomposition, The Effect of Particle Size, and Discussion of Results, Proc. Roy-Sol. London A., 227, 228-241 (1955). https://doi.org/10.1098/rspa.1955.0006
  53. A. J. Lang and S. Vyazovkin, Effect of Pressure and Sample Type on Decomposition of Ammonium Perchlorate, Combust. Flame, 145, 779-790 (2006). https://doi.org/10.1016/j.combustflame.2006.02.002
  54. W. E. Garner, Chemistry of the Solid State, 229-230, Academic Press, New York, USA (1955).
  55. A. K. Galwey and M. E. Brown, Thermal Decomposition of Ionic Solids, 117-121, Elsevier, New York, USA (1999).
  56. J. A. Augis and J. E. Bennett, Calculation of the Avrami Parameters for Heterogeneous Solid State Reactions using a Modified the Kissinger Method, J. Therm. Anal., 13, 283-292 (1978). https://doi.org/10.1007/BF01912301

Cited by

  1. Facile preparation of Cr2O3 nanoparticles and their use as an active catalyst on the thermal decomposition of ammonium perchlorate vol.37, pp.3, 2015, https://doi.org/10.1080/07370652.2019.1593551
  2. 고체 추진제 접착용 코팅제 조성 연구(I) vol.24, pp.5, 2015, https://doi.org/10.6108/kspe.2020.24.5.084