DOI QR코드

DOI QR Code

Environmentally Friendly Synthesis of Amide by Metal-catalyzed Nitrile Hydration in Aqueous Medium

수중에서 금속 촉매의 니트릴 수화 반응에 의한 환경친화적 아미드 합성

  • Received : 2015.03.17
  • Published : 2015.04.10

Abstract

Hydration of nitriles in the environmentally benign neutral conditions is the most economical and attractive way to produce amides. Substantial research works have been carried out to apply the solid metal oxides and transition metal supported catalytic systems to promote the hydration of nitriles. The most significant feature of these catalysts is the applicability to a wide range of substrates including aromatic, alicyclic, hetero-atomic, and aliphatic nitriles. These catalysts are also characterized by the easy isolation from the reaction mixture and the reusability while maintaining the high catalytic activity. This review accounts over the detailed survey of the metal oxide and solid supported metal catalysts for preparing amides from the hydration of nitriles.

친환경적 조건에서의 니트릴의 수화 반응은 아미드를 생산하기 위한 가장 경제적이고 매력적인 방법이다. 고체 금속 산화물과 지지체를 이용한 전이 금속 촉매 시스템은 이러한 니트릴 수화 반응을 보다 향상시키기 위한 의미 있는 연구로써 수행되어져 왔다. 이들 촉매들의 중요한 특징은 방향족, 지방족, 이종 원자형, 지방족 고리형 등의 니트릴들을 포함하는 넓은 범위의 다양한 기질들에 적용된다는 것이다. 또한 이들은 높은 촉매적 활성을 유지하면서 여러 번의 재사용성이 가능하고 반응 후 그 혼합물로부터 분리가 용이하다는 장점들을 갖는다. 이 리뷰를 통하여 니트릴 수화반응을 통한 아미드 합성에 적용되는 금속 산화물과 지지체를 가진 금속 촉매들에 대해 알아본다.

Keywords

References

  1. I. Johansson, Othmer Encyclopedia of Chemical Technology, JohnWiley & Sons, New York, 442-463 (2004).
  2. A. Greenberg, C. M. Breneman, and J. F. Liebman, The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science, John Wiley & Sons (2000).
  3. J. S. Carey, D. Laffan, C. Thomson, and M. T. Williams, Analysis of the reactions used for the preparation of drug candidate molecules, Org. & Biomol. Chem., 4, 2337-2347 (2006). https://doi.org/10.1039/b602413k
  4. R. W. Dugger, J. A. Ragan, and D. H. B. Ripin, Survey of GMP bulk reactions run in a research facility between 1985 and 2002, Org. Process Res. Dev., 9, 253-258 (2005). https://doi.org/10.1021/op050021j
  5. B. L. Deopura, B. Gupta, M. Joshi, and R. Alagirusami, Polyesters and Polyamides, CRC Press, Boca Raton (2008).
  6. R. Garcia-Alvarez, P. Crochet, and V. Cadierno, Metal-catalyzed amide bond forming reactions in an environmentally friendly aqueous medium: nitrile hydrations and beyond, Green Chem., 15, 46-66 (2013). https://doi.org/10.1039/C2GC36534K
  7. D. J. Constable, C. Jimenez-Gonzalez, and R. K. Henderson, Perspective on solvent use in the pharmaceutical industry, Org. Process Res. Dev., 11, 133-137 (2007). https://doi.org/10.1021/op060170h
  8. F. M. Kerton and R. Marriott, Alternative solvents for green chemistry, Royal Society of chemistry (2013).
  9. E. Valeur and M. Bradley, Amide bond formation: beyond the myth of coupling reagents, Chem. Soc. Rev., 38, 606-631 (2009). https://doi.org/10.1039/B701677H
  10. R. B. N. Baig, M. N. Nadagouda, and R. S. Varma, Ruthenium on chitosan: a recyclable heterogeneous catalyst for aqueous hydration of nitriles to amides, Green Chem., 16, 21-22 (2014).
  11. V. Cadierno, J. Francos, and J. Gimeno, Selective ruthenium-catalyzed hydration of nitriles to amides in pure aqueous medium under neutral conditions, Chemistry, 14, 6601-6605 (2008). https://doi.org/10.1002/chem.200800847
  12. S. Kumar and P. Das, Solid-supported ruthenium (0): an efficient heterogeneous catalyst for hydration of nitriles to amides under microwave irradiation, New J. Chem., 37, 2987-2990 (2013). https://doi.org/10.1039/c3nj00493g
  13. T. Mitsudome, Y. Mikami, H. Mori, S. Arita, T. Mizugaki, K. Jitsukawa, and K. Kaneda, Supported silver nanoparticle catalyst for selective hydration of nitriles to amides in water, Chem. Commun., 40, 3258-3260 (2009).
  14. V. Polshettiwar and R. S. Varma, Nanoparticle-supported and magnetically recoverable ruthenium hydroxide catalyst: efficient hydration of nitriles to amides in aqueous medium, Chemistry, 15, 1582-1586 (2009). https://doi.org/10.1002/chem.200802264
  15. K. Shimizu, T. Kubo, A. Satsuma, T. Kamachi, and K. Yoshizawa, Surface oxygen atom as a cooperative ligand in Pd nanoparticle catalysis for selective hydration of nitriles to amides in water: experimental and theoretical studies, ACS Catal., 2, 2467-2474 (2012). https://doi.org/10.1021/cs3006154
  16. M. Tamura, A. Satsuma, and K. Shimizu, $CeO_{2}$-catalyzed nitrile hydration to amide: reaction mechanism and active sites, Catal. Sci. & Tech., 3, 1386-1393 (2013). https://doi.org/10.1039/c3cy00033h
  17. M. Tamura, H. Wakasugi, K. Shimizu, and A. Satsuma, Efficient and substrate-specific hydration of nitriles to amides in water by using a $CeO_{2}$ catalyst, Chemistry, 17, 11428-11431 (2011). https://doi.org/10.1002/chem.201101576
  18. M. Tamura, T. Tonomura, K. Shimizu, and A. Satsuma, $CeO_{2}$-catalyzed one-pot selective synthesis of N-alkyl amides from nitriles, amines and water, Appl. Catal. A: General., 417, 6-12 (2012).
  19. S. C. Roy, P. Dutta, L. N. Nandy, S. K. Roy, P. Samuel, S. M. Pillai, V. K. Kaushik, and M. Ravindranathan, Hydration of 3-cyanopyridine to nicotinamide over $MnO_{2}$ catalyst, Appl. Catal. A: General., 290, 175-180 (2005). https://doi.org/10.1016/j.apcata.2005.05.035
  20. A. J. Van Dijk, R. Duchateau, E. J. Hensen, J. Meuldijk, and C. E. Koning, Polyamide Synthesis from 6 Aminocapronitrile, Part 2: Heterogeneously catalyzed nitrile hydrolysis with consecutive amine amidation, Chem. Eur. J., 13, 7673-7681 (2007). https://doi.org/10.1002/chem.200601898
  21. R. Garcia-Alvarez, J. Francos, E. Tomas-Mendivil, P. Crochet, and V. Cadierno, Metal-catalyzed nitrile hydration reactions: The specific contribution of ruthenium, J. Organomet. Chem., 771, 93-104 (2014). https://doi.org/10.1016/j.jorganchem.2013.11.042
  22. K. Mori, K. Yamaguchi, T. Mizugaki, K. Ebitani, and K. Kaneda, Catalysis of a hydroxyapatite-bound Ru complex: efficient heterogeneous oxidation of primary amines to nitriles in the presence of molecular oxygen, Chem. Commun., 32, 461-462 (2001).
  23. K. Yamaguchi, M. Matsushita, and N. Mizuno, Efficient hydration of nitriles to amides in water, catalyzed by ruthenium hydroxide supported on alumina, Angew. Chemi., 116, 1602-1606 (2004). https://doi.org/10.1002/ange.200353461
  24. G. K. S. Prakash, S. B. Munoz, A. Papp, K. Masood, I. Bychinskaya, T. Mathew, and G. A. Olah, Nafion-Ru: A sustainable catalyst for selective hydration of nitriles to amides, Asian J. Org. Chem., 1, 146-149 (2012). https://doi.org/10.1002/ajoc.201200043
  25. H. Woo, K. Lee, S. Park, and K. H. Park, Magnetically separable and recyclable $Fe_{3}O_{4}$-supported Ag nanocatalysts for reduction of nitro compounds and selective hydration of nitriles to amides in water, Molecules, 19, 699-712 (2014). https://doi.org/10.3390/molecules19010699
  26. K. Shimizu, N. Imaiida, K. Sawabe, and A. Satsuma, Hydration of nitriles to amides in water by $SiO_{2}$-supported Ag catalysts promoted by adsorbed oxygen atoms, Appl. Catal. A: General., 421, 114-120 (2012).

Cited by

  1. -alkylation of amides with alcohols vol.17, pp.8, 2019, https://doi.org/10.1039/C8OB03091J
  2. Selective Hydration of Nitriles to Corresponding Amides in Air with Rh(I)-N-Heterocyclic Complex Catalysts vol.10, pp.1, 2015, https://doi.org/10.3390/catal10010125
  3. Catalytic hydration of cyanamides with phosphinous acid-based ruthenium(II) and osmium(II) complexes: scope and mechanistic insights vol.10, pp.12, 2020, https://doi.org/10.1039/d0cy00523a
  4. Access to α‐ and β‐Hydroxyamides and Ureas Through Metal‐Catalyzed C≡N Bond Hydration and Transfer Hydration Reactions vol.2021, pp.32, 2015, https://doi.org/10.1002/ejic.202100413