DOI QR코드

DOI QR Code

Photo-induced inter-protein interaction changes in the time domain; a blue light sensor protein PixD

  • Terazima, Masahide (Department of Chemistry, Graduate School of Science, Kyoto University)
  • 투고 : 2015.03.10
  • 심사 : 2015.03.19
  • 발행 : 2015.03.01

초록

For understanding molecular mechanisms of photochemical reactions, in particular reactions of proteins with biological functions, it is important to elucidate both the initial reactions from the photoexcited states and the series of subsequent chemical reactions, e.g., conformation, intermolecular interactions (hydrogen bonding, hydrophobic interactions), and inter-protein interactions (oligomer formation, dissociation reactions). Although time-resolved detection of such dynamics is essential, these dynamics have been very difficult to track by traditional spectroscopic techniques. Here, relatively new approaches for probing the dynamics of protein photochemical reactions using time-resolved transient grating (TG) are reviewed. By using this method, a variety of spectrally silent dynamics can be detected and such data provide a valuable description about the reaction scheme. Herein, a blue light sensor protein TePixD is the exemplar. The initial photochemistry for TePixD occurs around the chromophore and is detected readily by light absorption, but subsequent reactions are spectrally silent. The TG experiments revealed conformational changes and changes in inter-protein interactions, which are essential for TePixD function. The TG experiments also showed the importance of fluctuations of the intermediates as the driving force of the reaction. This technique is complementary to optical absorption detection methods. The TG signal contains a variety of unique information, which is difficult to obtain by other methods. The advantages and methods for signal analyses are described in detail in this review.

키워드

참고문헌

  1. Modern optical spectroscopy, Parson, W.W., Springer, 2007.
  2. Principle of physical biochemistry, van Holde K.E.; Johnson, W.C.; Ho, P.S., Prentice-Hall, 1998.
  3. Spectroscopy for the biological science, hammes, G.G., John Wiley&Sons, 2005.
  4. Takeshita, K.; Hirota, N.; Imamoto, Y.; Kataoka, M.; Tokunaga, F.; Terazima, M. J.Am.Chem.Soc., 2000, 122,8524-8528. https://doi.org/10.1021/ja000426d
  5. Sakakura, M.; Yamaguchi, S.; Hirota, N.; Terazima, M., J.Am.Chem.Soc., 2001,123, 4286-4294. https://doi.org/10.1021/ja9944655
  6. Nishioku, Y.; Nakagawa, M.; Tsuda, M.; Terazima, M., Biophy.J., 2001,80,2922-2927. https://doi.org/10.1016/S0006-3495(01)76257-1
  7. Eitoku, T.;Nakasone, Y.;Matsuoka, D.;Tokutomi, S.;Terazima, M., J.Am.Chem.Soc., 2005, 127,13238-13244. https://doi.org/10.1021/ja052523i
  8. Nakasone, Y.;Eitoku, T.;Matsuoka, D.;Tokutomi, S;Terazima, M., J.Mol.Biol., 2007, 367, 432-442. https://doi.org/10.1016/j.jmb.2006.12.074
  9. Nakasone, Y.; Ono, T.;Ishii, A.;Masuda, S.;Terazima, M., J.Am.Chem.Soc., 2007, 129, 7028-7035. https://doi.org/10.1021/ja065682q
  10. Hazra, P.;Inoue, K.; Laan, W.; Hellingwerf, K. J.;Terazima, M., J.Phys.Chem.B, 2008, 112, 1494-1501. https://doi.org/10.1021/jp0767314
  11. Hoshihara, Y.; Kimura, Y.;Matsumoto, M.; Nagasawa, M.;Terazima, M., Rev.Sci.Instrum., 2008, 79, 034101 (1-5). https://doi.org/10.1063/1.2894331
  12. Kondoh, M.;Hitomi, K.;Yamamoto, J.;Todo, T.;Iwai, S.; Getzoff, E. D.; Terazima, M., J.Am.Chem.Soc., 2011, 133, 2183-2191. https://doi.org/10.1021/ja107691w
  13. Nakasone, Y.;Zikihara, K.;Tokutomi, S;Terazima, M., Photochem.Photobiol.Sci., 2013, 12, 1171-1179. https://doi.org/10.1039/c3pp50047k
  14. Terazima, M., Phys.Chem.Chem.Phys., 2006, 8,545-557. https://doi.org/10.1039/B513509E
  15. Terazima, M., Biochim.Biophys.Acta, 2011, 1814,1093-1105. https://doi.org/10.1016/j.bbapap.2010.12.011
  16. Terazima, M., Phys.Chem.Chem.Phys., 2011, 13, 16928-16940. https://doi.org/10.1039/c1cp21868a
  17. Terazima, M., Bull.Chem.Soc.Jpn, 2004, 77,23-41. https://doi.org/10.1246/bcsj.77.23
  18. Nada, T.;Terazima, M., Biophys.J., 2003, 85,1876-1881. https://doi.org/10.1016/S0006-3495(03)74615-3
  19. Hirota, S.;Fujimoto, Y.;Choi, J.;Baden, N.;Katagiri, N.;Akiyama, M.;Hulsker, R.;Ubbink, M.;Okajima, T.;Takabe, T.; Funasaki, N.;Watanabe, Y.;Terazima, M., J.Am.Chem.Soc., 2006, 128, 7551-7558. https://doi.org/10.1021/ja058788e
  20. Baden, N.;Terazima, M., J.Phys.Chem.B, 2006, 110, 15548-15555. https://doi.org/10.1021/jp0602171
  21. Nishida, S.;Nada, T.;Terazima, M., Biophys.J., 2004, 87, 2663-2675. https://doi.org/10.1529/biophysj.104.042531
  22. Nishida, S.;Nada, T.;Terazima, M., Biophys.J., 2005, 89, 2004-2010. https://doi.org/10.1529/biophysj.104.056762
  23. Tanaka, K.;Nakasone, Y.;Okajima, K.;Ikeuchi, M.;Tokutomi, S;Terazima, M., J.Mol.Biol., 2009, 386, 1290-1300. https://doi.org/10.1016/j.jmb.2009.01.026
  24. Tanaka, K.; Nakasone, Y.;Okajima, K.;Ikeuchi, M.; Tokutomi, S;Terazima, M., FEBS Lett., 2011, 585, 786-790. https://doi.org/10.1016/j.febslet.2011.02.003
  25. Toyooka, T.;Tanaka, K.;Okajima, K.;Ikeuchi, M.;Tokutomi, S;, Terazima, M., Photochem.Photobiol., 2011, 87,584. https://doi.org/10.1111/j.1751-1097.2010.00849.x
  26. Kuroi, K.;Tanaka, K.;Okajima, K.;Ikeuchi, M.;Tokutomi, S;Terazima, M., Photochem.Photobiol.Sci., 2013, 12, 1180-1186. https://doi.org/10.1039/c3pp25434h
  27. Kuroi, K.; Okajima, K.;Ikeuchi, M.;Tokutomi, S;Terazima, M., Pro.Natl.Acad.Sci.USA, 2014, 111, 14764-14769. https://doi.org/10.1073/pnas.1413222111
  28. Eichler, H. J.;Gunter, P.; Pohl, D. W. Laser induced dynamic gratings, Spirnger-Verlag, Berlin, 1986.
  29. Terazima, M., Adv. Photochemistry, Eds. Neckers, D.C.; Volman, D.H.; von Bunau, G. John Wiley&Sons, 1998, 24,255-338.
  30. Terazima, M., J.Photochem.Photobiol.C, 2002, 3,81-108. https://doi.org/10.1016/S1389-5567(02)00021-7
  31. Terazima, M.;Hirota, N.; Braslavsky, S.E.; Mandelis, A.; Bialkowski, S.E.; Diebold, G.J. ; Miller, R. J. D. ; Fournier, D. ; Palmer, R.A.; Tam, A., Pure Appl. Chem., 2004, 76, 1083-1118.
  32. Cussler, E.L.,Diffusion, Cambridge University Press, Cambridge, 1997.
  33. Tyrrell, H.J.V. ; Harris, K.R. Diffusion in liquids, Butterworth, London, 1984.
  34. Pecora, R. Dynamic Light Scattering, Plenum Press, London,1985
  35. Okajima, K.; Fukushima, Y.; Suzuki, H.; Kita, A.; Ochiai, Y.; Katayama, M.; Shibata, Y.; Miki, K.; Noguchi, T.; Itoh, S.; Ikeuchi, M., J. Mol. Biol. 2006, 363, 10-18. https://doi.org/10.1016/j.jmb.2006.08.005
  36. Okajima, K., Yoshihara, S., Fukushima, Y., Geng, X., Katayama, M., Higashi, S., J. Biochem. (Tokyo), 2005, 137, 741-750. https://doi.org/10.1093/jb/mvi089
  37. Kita, A.; Okajima, K.; Morimoto, Y.; Ikeuchi, M.; Miki, K., J. Mol. Biol. 2005, 349, 1-9. https://doi.org/10.1016/j.jmb.2005.03.067
  38. Hasegawa K.;Masuda S.;Ono T., Plant and cell physiol., 2005, 46, 136-146. https://doi.org/10.1093/pcp/pci003
  39. Fukushima, Y.; Okajima, K.; Shibata, Y.; Ikeuchi, M.; Itoh, S., Biochemistry, 2005, 44, 5149-5158. https://doi.org/10.1021/bi048044y
  40. Gauden, M.; Yeremenko, S.; Laan, W.; van Stokkum, I. H.; Ihalainen, J. A.; van Grondelle, R.; Hellingwerf, K. J.; Kennis, J. T., Biochemistry, 2005, 44, 3653-3662. https://doi.org/10.1021/bi047359a
  41. Laan, W.; van der Horst, M. A.; van Stokkum, I. H.; Hellingwerf, K. J., Photochem. Photobiol. 2003, 78, 290-297. https://doi.org/10.1562/0031-8655(2003)078<0290:ICOTPP>2.0.CO;2
  42. Khrenova M.; Domratcheva T.; Grigorenko B.;Nemukhin A., J.Mol.Modeling, 2011, 17, 1579-1586. https://doi.org/10.1007/s00894-010-0842-1
  43. Osaki, S., J. Biochem. (Tokyo), 1960, 48, 190-198. https://doi.org/10.1093/oxfordjournals.jbchem.a127159
  44. Cecil, R.;Ogston, A. G., Biochem. J., 1948, 42, 229.
  45. Balakrishnan, N.;Nevzorov, V.B. A Primer on Statistical Distributions, John Wiley & Sons, Inc. Hoboken, New Jersey, 2003.
  46. Wu, Q.;Ko W.H.; Gardner, K.H., Biochemistry, 2008, 47,10271-10280. https://doi.org/10.1021/bi8011687
  47. Grinstead, J.S.;Hsu, S.T.;Laan, W.;Bonvin, A.M.;Hellingwerf, K.J.;Boelens, R.;Kaptein, R., ChemBioChem, 2006,7,187-193. https://doi.org/10.1002/cbic.200500270
  48. Freddolino, P.L.; Dittrich, M.;Schulten, K., Biophys.J., 2006,91, 3630-3639. https://doi.org/10.1529/biophysj.106.088609
  49. Freddolino, P.L., Gardner, K.H.;Schulten, K., Photochem.Photobiol.Sci., 2013, 12,1158-1170. https://doi.org/10.1039/c3pp25400c
  50. Peter, E.;Dick, B.; Baeurle, S., J.Mol.Modeling,2012,18, 1375-1388. https://doi.org/10.1007/s00894-011-1165-6
  51. Cooper, A., Proc. Natl Acad. Sci. USA, 1976,73, 2740-2741. https://doi.org/10.1073/pnas.73.8.2740
  52. Yuan, H.;Bauer, C. E., Proc. Natl Acad. Sci. USA. 2008, 105. 11715-11719. https://doi.org/10.1073/pnas.0802149105
  53. Tanaka, K.;Nakasone, Y.; Okajima, K.; Ikeuchi, M.; Tokutomi, S;Terazima, M., J.Mol.Biol., 2011, 409, 773-785. https://doi.org/10.1016/j.jmb.2011.04.032
  54. Tanaka, K.;Nakasone, Y.;Okajima, K.;Ikeuchi, M.;Tokutomi, S;Terazima, M., J.Am.Chem.Soc., 2012, 134, 8336-8339. https://doi.org/10.1021/ja301540r