DOI QR코드

DOI QR Code

국내산 경주마의 주기성 시계 유전자(PER3) SNP 및 운동에 따른 기능적 식별 접근 가능성 제안

An Approach to Identify Single Nucleotide Polymorphisms in the Period Circadian Clock 3 (PER3) Gene and Proposed Functional Associations with Exercise Training in a Thoroughbred Horse

  • 도경탁 (서라벌대학교 문화관광학부 스포츠승마과학과) ;
  • 조병욱 (부산대학교 생명자원과학대학 동물생명자원과학과)
  • Do, Kyoung-Tag (Department of Sport Equestrian, Sorabol College) ;
  • Cho, Byung-Wook (Department of Animal Science, College of Life Sciences, Pusan National University)
  • 투고 : 2015.08.06
  • 심사 : 2015.10.16
  • 발행 : 2015.11.30

초록

주기성 시계 유전자 3(period circadian clock gene 3, PER3)는 포유류에서 생물학적 주기 타이밍 시스템의 역할을 수행 한다. 이 유전자는 규칙적인 운동 체계에 의해 근육에서 전사 개시 되는 것으로 알려져 있다. 인간과 마우스에서는 본 유전자에 대해 잘 알려져 있지만, 주기 및 연주기 동안 낮의 길이에 영향을 많이 받는 말에서 운동 연관 연구는 존재하지 않는다. 운동 시 근육의 기능에 중요한 역할을 하는 PER3 유전자에 대해 대표적인 경주마인 국내산 더러브렛 품종의 운동 전과 운동 후 유전자 발현을 분석하기 위해 본 연구를 수행하였다. 그 결과, 골격근에서 PER3 유전자의 발현은 운동 전에 비해 운동 후에 유의적으로 증가하는 것으로 나타났다. 또한, 인실리코상에서 4개의 비동의성 단일 염기 변이(non-synonymous single nucleotide polymorphism, nsSNP) 분석과 이러한 nsSNP의 단백질 구조 및 기능 분석 결과, 전체 자유 에너지와 RMSD 값은 돌연변이의 원인이 될 수 있음으로 나타났다. 이 중, nsSNP–s395916798 (G72R)은 구조적 기능적 측면에서 중요한 잔기의 안정화 효과와 연관된 것을 알 수 있었다. 본 연구는 운동에 따라 더러브렛 골격근 내 PER3 발현 차이는 운동이라는 표현형에 대표될 수 있음을 확인하였다. 또한, SNP의 조합을 활용하여 운동 후 경주마의 조기 회복의 평가 지표로써 유용한 바이오마커가 될 수 있음을 시사한다.

The period circadian clock gene 3 (PER3) plays a role in the mammalian circadian clocksystem. A regular exercise regime may affect the PER3 transcription in skeletal muscle. Although the effects of day length on circadian and circannual processes are well established in humans and mice, the influence of exercise on these processes in the horse has not been investigated. The present study investigated the expression of the PER3 gene following exercise in a thoroughbred breed of Korean horse. In addition, a comprehensive in silico nonsynonymous single nucleotide polymorphism (nsSNP) analysis of the horse PER3 gene and predicted effects of nsSNPs on proteins were examined. The expression of PER3 in skeletal muscle was significantly upregulated after exercise. Four nsSNPs were functionally annotated and analyzed by computational prediction. The total free energy and RMSD values of PER3 gene showed causative mutations. The results showed that nsSNP s395916798 (G72R) was associated with residues that have stabilizing effects on structure and function of PER3 gene. This study documented role of PER3 gene in phenotypic adaptation related to exercise in skeletal muscle. Further, the SNPs in PER3 could serve as useful biomarkers of early recovery after exercise in racehorses.

키워드

참고문헌

  1. Art, T. and Lekeux, P. 2005. Exercise induced physiological adjustments to stressful conditions in sports horses. Livest. Prod. Sci. 92, 101-111. https://doi.org/10.1016/j.livprodsci.2004.11.013
  2. Atkinson, G., Edwards, B., Reilly, T. and Waterhouse, J. 2007. Exercise as a synchroniser of human circadian rhythms: an update and discussion of the methodological problems. Eur. J. Appl. Physiol. 99, 331-341. https://doi.org/10.1007/s00421-006-0361-z
  3. Cappelli, K., Felicetti, M., Capomaccio, S., Spinsanti, G., Silverstrelli, M. and Supplizi, A. V. 2007. Exercise induced stress in horses: selection of the most stable reference genes for quantitative RT-PCR normalization. BMC Mol. Biol. 9, 49.
  4. Ebisawa, T., Uchiyama, M., Kajimura, N., Mishima, K., Kamei, Y., Katoh, M., Watanabe, T., Sekimoto, M., Shibui, K., Kim, K., Kudo, Y., Ozeki, Y., Sugishita, M., Toyoshima, R., Inoue, Y., Yamada, N., Nagase, T., Ozaki, N., Ohara, O., Ishida, N., Okawa, M., Takahashi, K. and Yamauchi, T. 2001. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep. 2, 342-346. https://doi.org/10.1093/embo-reports/kve070
  5. Edgar, D. M. and Dement, W. C. 1991. Regularly scheduled voluntary exercise synchronizes the mouse circadian clock. Am. J. Physiol. 261, R928-R933.
  6. Guthrie, A. J. and Lund, R. J. 1998. Thermoregulation. Base mechanisms and hyperthermia. Vet. Clin. North Am. Equine. Pract. 14, 45-59.
  7. Kasper, C. E. 2013. Animal models of exercise and obesity. Annu. Rev. Nurs. Res. 31, 1-17. https://doi.org/10.1891/0739-6686.31.1
  8. Martin, A. M., Elliott, J. A., Duffy, P., Blake, C. M., Attia, S. B. and Katz, L. M., et al. 2010. Circadian regulation of locomotor activity and skeletal muscle gene expression in the horse. J. Appl. Physiol. 109, 1328-1336. https://doi.org/10.1152/japplphysiol.01327.2009
  9. Mautz, W. J. 2003. Exercising animal models in inhalation toxicology: interactions with ozone formaldehyde. Environ. Res. 92, 14-26. https://doi.org/10.1016/S0013-9351(02)00024-5
  10. McGivney, B. A., McGettigan, P. A., Browne, J. A., Evans, A. C., Fonseca, R. G., Loftus, B. J., Lohan, A., MacHugh, D. E., Murphy, B. A., Katz, L. M. and Hill, E. W. 2010. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC Genomics 11, 398. https://doi.org/10.1186/1471-2164-11-398
  11. Morris, C., Atkinson, G., Drust, B., Marrin, K. and Gregson, W. 2009. Human core temperature responses during exercise and subsequent recovery: an important interaction between diurnal variation and measurement site. Chronobiol. Int. 26, 560-575. https://doi.org/10.1080/07420520902885981
  12. Nadkarni, N. A., Weale, M., von Schantz, M. and Thomas, M. G. 2005. Evolution of a length polymorphism in the human PER3 gene, a component of the circadian system. J. Biol. Rhythms 20, 490-499. https://doi.org/10.1177/0748730405281332
  13. Piccione, G., Grasso, F., Fazio, F. and Giudice, E. 2008. The effect of physical exercise on the daily rhythm of platelet aggregation and body temperature in horses. Vet. J. 176, 216-220. https://doi.org/10.1016/j.tvjl.2007.01.026
  14. Power, S. K. and Jackson, M. J. 2008. Exercise induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol. Rev. 88, 1243-1276. https://doi.org/10.1152/physrev.00031.2007
  15. Reppert, S. M. and Weaver, D. R. 2002. Coordination of circadian timing in mammals. Nature 418, 935-941. https://doi.org/10.1038/nature00965
  16. Sodhi, S. S., Ghosh, M., Song, K. D., Sharma, N., Kim, J. H., Kim, N., Lee, S. J., Kang, C. W., Oh, S. J. and Jeong, D. K. 2014. A comparative approach to prioritize SNPs in Acetyl-CoA- acetyletransferase-2 (ACAT-2) and its profiling for the metabolic process in pig. PLoS ONE 9, e102432. https://doi.org/10.1371/journal.pone.0102432
  17. Toti, L., Bartalucci, A., Ferrucci, M., Fulceri, F., Lazzeri, G., Lenzi, P., Soldani, P., Gobbi, P., La Torre, A. and Gesi, M. 2013. High intensity exercise training induces morphological and biochemical changes in skeletal muscles. Biol. Sport. 30, 301-309. https://doi.org/10.5604/20831862.1077557
  18. Zhengtang, Q., Zhai, X. and Ding, S. 2013. How to explain exercise-induced phenotype from molecular data: rethink and reconstruction based on AMPK and mTOR signaling. Springerplus 2, 693. https://doi.org/10.1186/2193-1801-2-693