DOI QR코드

DOI QR Code

후박나무에서 분리한 Meso-dihydroguaiaretic acid의 tyrosinase 저해활성

Tyrosinase Inhibitory Activities of Meso-dihydroguaiaretic Acid from Machilus thunbergii

  • Kwon, Hyun Sook (Korea Promotion Institute for Traditional Medicine Industry) ;
  • Lee, Kyung Dong (Department of Oriental Medicine Materials, Dongshin University) ;
  • Kim, Su Cheol (Amicogen Inc.) ;
  • Cho, Soo Jeong (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology)
  • 투고 : 2015.07.28
  • 심사 : 2015.10.30
  • 발행 : 2015.11.30

초록

후박나무(녹나무과)는 한국과 일본 등지에 서식하는 상록 교목으로 한국, 중국, 일본에서 부종, 복통, 복부 팽만 등의 질병 치료를 위해 오랫동안 사용되어오고 있다. 본 연구에서는 후박나무 껍질을 메탄올에 추출하고 메탄올 추출물을 헥산, 클로로포름, 부탄올에 순차적으로 분획하였다. 클로로포름 분획물로부터 2종의 화합물을 분리하였으며 분리된 화합물1과 2의 구조는 1H-, 13C-NMR과 참고 문헌 데이터에 의해 dibenzylbutane lignin 화합물인 macelignan (1)과 meso-dihydroguaiaretic acid (2)로 동정되었다. 분리된 화합물들의 tyrosinase 저해 활성을 측정한 결과, 화합물 2는 tyrosinase 저해 활성 중 monophenolase (IC50 = 10.2 μM)에 대해 높은 저해활성을 나타내는 경쟁적 저해제였으며 효소에 결합하는 화합물 2의 저해 상수(Ki 값)는 4.8 μM였다. 따라서 meso-dihydroguaiaretic acid (2)는 멜라닌 생합성과 관련된 피부 질환 치료를 위한 잠재적 후보가 될 수 있을 것으로 판단된다.

Machilus thunbergii (Lauraceae) is an evergreen tree cultivated in Korea and Japan. M. thunbergii has long been used as a traditional medicine in Korea, China, and Japan to treat various diseases, including edema, abdominal pain, and abdominal distension. In this study, dried stem bark of M. thunbergii extracted in methanol and extract was partitioned into n-hexane, CHCl3, and BuOH. The CHCl3-soluble extracts chromatographed on silica gel column using a CHCl3/acetone and n-hexane/EtOAc mixture to afford Compound 1 and 2. Two dibenzylbutane lignans, macelignan (1) and meso-dihydroguaiaretic acid (2), were isolated from the CHCl3-soluble extract of M. thunbergii stem bark. The structures of 1 and 2 were determined by 1H- and 13C-NMR spectroscopic data analyses and a comparison with literature data. The tyrosinase inhibitory activity of the isolated compounds was evaluated. Among these compounds, Compound 2 strongly inhibited the monophenolase (IC50=10.2 μM) activity of tyrosinase. A kinetic analysis showed that Compound 2 was a competitive inhibitor. The apparent inhibition constant (Ki) for Compound 2 binding to free enzyme was 4.8 μM. Based on these results, it can be concluded that meso-dihydroguaiaretic acid (2) is a potential candidate for the treatment of melanin biosynthesis-related skin diseases.

키워드

참고문헌

  1. Cho, J. Y., Choi, G. J., Son, S. W., Jang, K. S., Lim, H. K., Lee, S. O., Sung, N. D., Cho, K. Y. and Kim, J. C. 2007. Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi. Pest Manag. Sci. 63, 935-940. https://doi.org/10.1002/ps.1420
  2. Forrest, J. E., Heacock, R. A. and Forrest, T. P. 1974. Diarylpropanoids from nutmeg and mace (Myristica fragrans Houtt.). J. Chem. Soc. Perkin 1 2, 205-209.
  3. Friedman, M. 1996. Food browning and it’s prevent; an overview. J. Agric. Food Chem. 44, 631-653. https://doi.org/10.1021/jf950394r
  4. Ha, T. J., Tamura, S. and Kubo, I. 2005. Effects of mushroom tyrosinase on anisaldehyde. J. Agric. Food Chem. 53, 7024-7028. https://doi.org/10.1021/jf047943q
  5. Jin , D. Q., Lim, C. S., Hwang, J. K., Ha, I. and Han, J. S. 2005. Biochem. Biophys. Res. Commun. 331, 1264-1269. https://doi.org/10.1016/j.bbrc.2005.04.036
  6. Kahn, V. and Andrawis, A. 1985. Inhibition of mushroom tyrosinase by tropolone. Phytochemistry 24, 905-908. https://doi.org/10.1016/S0031-9422(00)83150-7
  7. Karikome, H., Mimaki, Y. and Sashida, Y. 1991. A butanolide and phenolics from Machilus thunbergii. Phytochemistry 30, 315-319. https://doi.org/10.1016/0031-9422(91)84145-I
  8. Kawaguchi, Y., Yamauchi, S., Masuda, K., Nishiwaki, H., Akiyama, K., Maruyama, M., Sugahara, T., Kishida, T. and Koba, Y. 2009. Antimicrobial activity of stereoisomers of butane-type lignans. Biosci. Biotechnol. Biochem. 73, 1806-1810. https://doi.org/10.1271/bbb.90167
  9. Kim, N. Y. and Ryu, J. H. 2003. Butanoilds from Machilus thunbergii and their inhibitory activity on nitric oxide synthesis in activated macrophages. Phytother. Res. 17, 372-375. https://doi.org/10.1002/ptr.1160
  10. Kim, W., Lyu, H. N., Kwon, H. S., Kim, Y. S., Lee, K. H., Kim, D. Y., Chakraborty, G., Choi, K. Y., Yoon, H. S. and Kim, K. T. 2013. Obtusilactone B from Machilus Thunbergii targets barrier-to-autointegration factor to treat cancer. Mol. Pharmacol. 83, 367-376. https://doi.org/10.1124/mol.112.082578
  11. Komae, H. and Hayashi, N. 1972. Terpenes from Actinodaphne, Machilus and Neolitsea species. Phytochemistry 11, 1181-1182. https://doi.org/10.1016/S0031-9422(00)88484-8
  12. Kubo, I. and Kinst-Hori, I. 1999. Flavonols from saffron flower. J. Agric. Food Chem. 47, 4121-4125. https://doi.org/10.1021/jf990201q
  13. Lee, H. S. 2002. Tyrosinase inhibitors of Pulsatilla cernua root-derived materials. J. Agric. Food Chem. 50, 1400-1403. https://doi.org/10.1021/jf011230f
  14. Lee, J. Y., Han, Y. B., Woo, W. S. and Shin, K. H. 1990. Antioxidant activity of Diarylbutanes. Kor. J. Pharmacogn. 21, 270-273.
  15. Li, G., Lee, C. S., Woo, M. H., Lee, S. H., Chang, H. W. and Son, J. K. 2004. Lignans from the bark of Machilus thunbergii and their DNA topoisomerases I and II inhibition and cytotoxicity. Biol. Pharm. Bull. 27, 1147-1150. https://doi.org/10.1248/bpb.27.1147
  16. Ma, C. J., Sung, S. H. and Kim, Y. C. 2004. Neuroprotective lignans from the bark of Machilus thunbergii. Planta Med. 70, 79-80. https://doi.org/10.1055/s-2004-815463
  17. Maeda, K. and Fukuda, M. 1991. In vitro effectiveness of several whitening cosmetic components in human melanocytes. J. Soc. Cosmet. Chem. 42, 361-368.
  18. Moon, T. C., Seo, C. S., Ha, K., Kim, J. C., Hwang, N. K., Hong, T. G., Kim, J. H., Kim, D. H., Son, J. K. and Chang, H. W. 2008. meso-Dihydroguaiaretic acid isolated from Saururus chinensis inhibits cyclooxygenase-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Arch. Pharm. Res. 31, 606-610. https://doi.org/10.1007/s12272-001-1200-y
  19. Park, E. Y., Shin, S. M., Ma, C. J., Kim, Y. C. and Kim, S. G. 2005. meso-Dihydroguaiaretic acid from Machilus thunbergii down-regulates TGF-β1 gene expression in activated hepatic stellate cells via inhibition of AP-1 activity. Planta Med. 71, 393-398. https://doi.org/10.1055/s-2005-864131
  20. Park, B. Y., Min, B. S., Kwon, O. K., Oh, S. R., Aha, K. S., Kim, J. T., Kim, D. Y., Bae, K. and Lee, H. K. 2004. Increase of caspase-3 activity by lignans from Machilus thunbergii in HL-60 cells. Biol. Pharm. Bull. 27, 1305-1307. https://doi.org/10.1248/bpb.27.1305
  21. Paul, S., Hwang, J. K., Kim, H. Y., Jeon, W. K., Chung, C. and Han, J. S. 2013. Multiple biological properties of macelignan and its pharmacological implications. Arch. Pharm. Res. 36, 264-272. https://doi.org/10.1007/s12272-013-0048-z
  22. Seo, S. Y., Sharma, V. K. and Sharma, N. 2003. Mushroom tyrosinase: recent prospects. J. Agric. Food Chem. 51, 2837-2853. https://doi.org/10.1021/jf020826f
  23. Parvez, S., Kang, M. K., Chung, H. S. and Bae, H. S. 2007. Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytother. Res. 21, 805-816. https://doi.org/10.1002/ptr.2184
  24. Shin, K. H. and Woo, W. S. 1986. Hepatic Drug metabolism modifier from arils of Myristica fragrans. Kor. J. Pharmacogn. 17, 91-99.
  25. Son, S. M., Moon, K. D. and Lee, C. Y. 2000. Rhubarb juice as a natural antibrowing agent. J. Food Sci. 65, 1288-1289. https://doi.org/10.1111/j.1365-2621.2000.tb10598.x
  26. Woo, W. S., Shin, K. H., Wagner, H. and Lotter, H. 1987. The structure of macelignan from Myristica fragrans. Phytochemistry 26, 1542-1543. https://doi.org/10.1016/S0031-9422(00)81858-0
  27. Yu, Y. U., Kang, S. Y., Park, H. Y., Sung, S. H., Lee, E. J., Kim, S. Y. and Kim, Y. C. 2000. Antioxidant lignans from Machilus thunbergii protect CCl4-injured primary cultures of rat hepatocytes. J. Pharm. Pharmacol. 52, 1163-1169. https://doi.org/10.1211/0022357001774949