DOI QR코드

DOI QR Code

The Effects of Pueraria and Rehmannia Glutinosa Intake and Exercise on Epigenetic Modification in Ovariectomized Rat Skeletal Muscle

난소 절제 쥐의 골격근에서 갈근 및 지황 섭취와 운동이 후성 유전적 변화에 미치는 영향

  • Jung, Hyun Ji (Department of Exercise Science, College of Health Sciences, Ewha Womans University) ;
  • Kim, Hye Jin (Department of Exercise Science, College of Health Sciences, Ewha Womans University) ;
  • Kwon, Oran (Department of Nutritional Science and Food Management, College of Health Sciences, Ewha Womans University) ;
  • Lee, Won Jun (Department of Exercise Science, College of Health Sciences, Ewha Womans University)
  • 정현지 (이화여자대학교 건강과학대학 체육과학과) ;
  • 김혜진 (이화여자대학교 건강과학대학 체육과학과) ;
  • 권오란 (이화여자대학교 건강과학대학 식품영양학과) ;
  • 이원준 (이화여자대학교 건강과학대학 체육과학과)
  • Received : 2012.09.22
  • Accepted : 2015.10.13
  • Published : 2015.11.30

Abstract

The purpose of this study was to determine the effect of Pueraria lobate-root based combination supplementation containing Rehmannia glutinosa and exercise on histone modification in ovariectomized rat hindlimb skeletal muscle. Sixty rats were fed with high fat diet and randomly assigned into the following groups for 8 weeks: 1)HSV; High fat+Sedentary+Vehicle, 2)HSP; High fat+Sedentary+PR, 3)HSH; High fat+Sedentary+Estradiol, 4)HEV; High fat+Ex+Vehicle, 5)HEP; High fat+Ex+PR, 6)HEH; High fat+Ex+Estradiol. Exercise consisted of low intensity treadmill exercise(1-4th wk:15 m/min for 30 min, 5-8th wk: 18 m/min for 40 min, 5 times/week). The result of this study showed that exercise and Pueraria and Rehmannia glutinosa intake suppressed weight gain. Furthermore, exercise and Pueraria and Rehmannia glutinosa intake increased muscle mass. This study observed H3K9 acetylation and demethylation in plantaris muscle in exercised group, but no difference in soleus muscle. To test whether the decrease in HDAC4, HDAC5 and G9a mRNA levels after exercise and Pueraria/Rehmannia glutinosa intake, HDAC4, HDAC5 and G9a mRNA levels were determined by real-time PCR. Only exercise induced HDAC5 and G9a mRNA reduction in plantaris muscle, but not in soleus muscle. In conclusion, these data demonstrates that exercise and Pueraria/Rehmannia glutinosa intake effect on body compositions. These changes are regulated by epigenetic modifications, such as histone acetylation and methylation. Future studies should focus on gene-specific epigenetics and other epigenetic mechanism for Pueraria/Rehmannia glutinosa intake.

본 연구는 난소 제거 수술을 시행하여 폐경기를 유도시킨 뒤 고지방 식이를 섭취한 쥐에게서 나타난 신체 변화에 있어 운동과 갈근/지황 섭취에 의한 개선 효과를 관찰하고, 그러한 효과가 골격근에서의 후성 유전적 발현 변화에 의한 것임을 규명하고자 하였다. 8주령의 쥐(rat, n=60)의 난소를 제거한 뒤 고지방 식이를 유도하면서 트레드밀 운동(exercise)을 실시하는 그룹과 비운동(sedentary) 그룹으로 나누었다. 두 그룹을 각각 estradiol, 갈근과 지황의 3:1 복합물(HT051), 그리고 물 섭취 군으로 다시 나누어 총 8주간 경구 투여를 함께 실시하였다. 그 결과 운동 그룹과 갈근/지황 섭취 그룹에서 체중이 유의하게 감소하였고, 가자미근과 족저근의 근질량 또한 운동 그룹과 갈근/지황 섭취 그룹에서 유의하게 증가하였다. 한편, 가자미근에서 물을 섭취하며 운동하지 않은 그룹의 H3K9 아세틸화가 억제 되었고 H3K9의 메틸화에는 변화가 없었다. 족저근의 경우 운동 그룹에서 H3K9 아세틸화가 현저하게 눈에 띄었고, 반대로 메틸화는 줄어든 것이 관찰되었다. 나아가 H3K9의 아세틸화와 메틸화를 조절하는 대표적인 효소 중 HDAC4, HDAC5, G9a 유전자의 mRNA 발현양을 정량한 결과, 가자미근에서는 모두 유의한 차이가 없었고 족저근에서 운동 한 그룹의 HDAC5와 G9a 유전자의 mRNA 발현양이 유의하게 감소하였지만 HDAC4의 mRNA는 차이가 없었다. 또한 운동과 갈근/지황의 상호작용 효과는 나타나지 않았다. 본 연구를 통하여 운동과 갈근/지황 섭취가 체중 감소, 근질량 증가에 영향을 미치고, 이러한 현상은 히스톤 H3K9 부분의 아세틸화와 메틸화에 의한 유전자 발현 조절이 그 기전으로 작용한다는 것을 알 수 있었다.

Keywords

References

  1. Bannister, A. J., Zegerman, P., Partridge, J. F., Miska, E. A., Thomas, J. O., Allshire, R. C. and Kouzarides, T. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120-124. https://doi.org/10.1038/35065138
  2. Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I. and Zhao, K. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837. https://doi.org/10.1016/j.cell.2007.05.009
  3. Bodine, S. C., Stitt, T. N., Gonzalez, M., Kline, W. O, Stover, G. L., Bauerlein, R., Zlotchenko, E., Scrimgeour, A., Lawrence, J. C., Glass, D. J. and Yancopoulos, G. D. 2001. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell. Biol. 3, 1014-1019. https://doi.org/10.1038/ncb1101-1014
  4. Carey, A. L., Steinberg, G. R., Macaulay, S. L., Thomas, W. G., Holmes, A. G., Ramm, G., Prelovsek, O., Hohnen-Behrens, C., Watt, M. J., James, D. E., Kemp, B. E., Pedersen, B. K. and Febbraio, M. A. 2006. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 10, 2688-2697.
  5. Chung, M. J., Sung, N. J., Park, C. S., Kweon, D. K., Mantovani, A., Moon, T. W., Lee, S. J. and Park, K. H. 2008. Antioxidative and hypocholesterolemic activities of water-soluble puerarin glycosides in HepG2 cells and in C57 BL/6J mice. Eur. J. Pharmacol. 578, 159-170. https://doi.org/10.1016/j.ejphar.2007.09.036
  6. D′Eon, T. M., Souza, S. C., Aronovitz, M., Obin, M. S., Fried, S. K. and Greenberg, A. S. 2005. Estrogen regulation of adiposity and fuel partitioning. Evidence of genomic and non-genomic regulation of lipogenic and oxidative pathways. J. Bio. Chem. 280, 35983-35991. https://doi.org/10.1074/jbc.M507339200
  7. Domingos, M. M. 2012. Resistance training restores the gene expression of molecules related to fat oxidation and lipogenesis in the liver of ovariectomized rats. Eur. J. Appl. Physiol. 112, 1437-1444.
  8. Dong, Z. and Chen, C. X. 2013. Effect of catalpol on diabetic nephropathy in rats. Phytomedicine 20, 1023-1029. https://doi.org/10.1016/j.phymed.2013.04.007
  9. Godsland, I. F. 2001. Effects of postmenopausal hormone replacement therapy on lipid, lipoprotein, and apolipoprotein (a) concentrations: analysis of studies published from 1974-2000. Fertil. Steril. 75, 898-915. https://doi.org/10.1016/S0015-0282(01)01699-5
  10. Guerra, M. C., Speroni, E., Broccoli, M., Cangini, M., Pasini, P., Minghett,A., Crespi-Perellino, N., Mirasoli, M., Cantelli-Forti, G. and Paolini, M. 2000. Comparison between chinese medical herb Pueraria lobata crude extract and its main isoflavone puerarin antioxidant properties and effects on rat liver CYP-catalysed drug metabolism. Life. Sci. 67, 2997-3006. https://doi.org/10.1016/S0024-3205(00)00885-7
  11. Henriksen, E. J. 2002. Invited Review: Effects of acute exercise and exercise training on insulin resistance. J. Appl. Physiol. 93, 788-796. https://doi.org/10.1152/japplphysiol.01219.2001
  12. Holloszy, J. O. 2005. Exercise-induced increase in muscle insulin sensitivity. J. Appl. Physiol. 99, 338-343. https://doi.org/10.1152/japplphysiol.00123.2005
  13. Kiens, B. 2006. Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol. Rev. 86, 205-243. https://doi.org/10.1152/physrev.00023.2004
  14. Kiens, B., Alsted, T. J. and Jeppesen, J. 2011. Factors regulating fat oxidation in human skeletal muscle. Obes. Rev. 12, 852-858. https://doi.org/10.1111/j.1467-789X.2011.00898.x
  15. Kim, A., Kiefer, C. M. and Dean, A. 2007. Distinctive signatures of histone methylation in transcribed coding and noncoding human {beta}-globin sequences. Mol. Cell. Biol. 27, 1271-1279. https://doi.org/10.1128/MCB.01684-06
  16. Kouzarides, T. 2007. Chromatin modifications and their functions. Cell 128, 693-705. https://doi.org/10.1016/j.cell.2007.02.005
  17. Lim, D. W., Kim, J. G. and Kim, Y. T. 2013. Effects of dietary isoflavones from puerariae radix on lipid and bone metabolism in ovariectomized rats. Nutrients 5, 2734-2746. https://doi.org/10.3390/nu5072734
  18. Ling, B. M., Bharathy, N., Chung, T. K., Kok, W. K., Li, S., Tan, Y. H., Rao, V. K., Gopinadhan, S., Sartorelli, V., Walsh, M. J. and Taneja, R. 2012. Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation. Proc. Natl. Acad. Sci. USA 109, 841-846. https://doi.org/10.1073/pnas.1111628109
  19. Ling, C. and Ronn, T. 2014. Epigenetic adaptation to regular exercise in humans. Drug. Discov. Today 19, 1015-1018. https://doi.org/10.1016/j.drudis.2014.03.006
  20. McGee, S. L. and Hargreaves, M. 2006. Exercise and skeletal muscle glucose transporter 4 expression: molecular mechanisms. Clin. Exp. Pharmacol. Physiol. 33, 395-399. https://doi.org/10.1111/j.1440-1681.2006.04362.x
  21. McKinsey, T. A., Zhang, C. L. and Olson, E. N. 2001. Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 11, 497-504. https://doi.org/10.1016/S0959-437X(00)00224-0
  22. Nitert, M. D., Dayeh, T., Volkov, P., Elgzyri, T., Hall, E., Nilsson, E., Yang, B. T., Lang, S., Parikh, H., Wessman, Y., Weishaupt, H., Attema, J., Abels, M., Wierup, N., Almgren, P., Jansson, P. A., Ronn, T., Hansson, O., Eriksson, K. F., Groop, L. and Ling, C. 2012. Impact of an exercise intervention on DNA methylation in skeletal muscle from firstdegree relatives of patients with type 2 diabetes. Diabetes 61, 3322-3332. https://doi.org/10.2337/db11-1653
  23. Peterson, C. L. and Laniel, M. A. 2004. Histones and histone modifications. Curr. Biol. 14, 546-551. https://doi.org/10.1016/j.cub.2004.07.007
  24. Potthoff, M. J., Wu, H., Arnold, M. A., Shelton, J. M., Backs, J., McAnally, J., Richardson, J. A., Bassel-Duby, R. and Olson, E. N. 2007. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J. Clin. Invest. 117, 2459-2467. https://doi.org/10.1172/JCI31960
  25. Prasain, J. K., Peng, N., Rajbhandari, R. and Wyss, J. M. 2012. The Chinese Pueraria root extract (Pueraria lobata) ameliorates impaired glucose and lipid metabolism in obese mice. Phytomedicine 20, 17-23 https://doi.org/10.1016/j.phymed.2012.09.017
  26. Rea, S., Eisenhaber, F., O′Carroll, D., Strahl, B. D., Sun, Z. W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C. P., Allis, C. D. and Jenuwein, T. 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593-539. https://doi.org/10.1038/35020506
  27. Shi, W. G., Qu, L. and Wang, J. W. 2002. Study on interventing effect of puerarin on insulin resistance in patients with coronary heart disease. Zhongguo ZhongXiYi JieHe ZaZhi 22, 21-24.
  28. Shieh, J. P., Cheng, K. C., Chung, H. H., Kerh, Y. F., Yeh, C. H. and Cheng, J. T. 2011. Plasma glucose lowering mechanisms of catalpol, an active principle from roots of Rehmannia glutinosa, in streptozotocin-induced diabetic rats. J. Agric. Food. Chem. 59, 3747-3753. https://doi.org/10.1021/jf200069t
  29. Spangenburg, E. E., Wohlers, L. M. and Valencia, A. P. 2012. Metabolic dysfunction under reduced estrogen levels: Looking to exercise for prevent. Exerc. Sport. Sci. Rev. 40, 195-203. https://doi.org/10.1097/JES.0b013e31825eab9f
  30. Thompson, P. D., Crouse, S. F., Goodpaster, B., Kelley, D., Moyna, N. and Pescatello, L. 2001. The acute versus the chronic response to exercise. Med. Sci. Sports. Exerc. 33, S438-S445. https://doi.org/10.1097/00005768-200106001-00012
  31. Turgeon, J. L., Carr, M. C., Maki, P. M., Mendelsohn, M. E. and Wise, P. M. 2006. Complex actions of sex steroids in adipose tissue, the cardiovascular system, and brain: Insights from basic science and clinical studies. Endocr. Rev. 27, 575-605. https://doi.org/10.1210/er.2005-0020
  32. Venables, M. C. and Jeukendrup, A. E. 2008. Endurance training and obesity: effect on substrate metabolism and insulin sensitivity. Med. Sci. Sports. Exerc. 40, 495-502. https://doi.org/10.1249/MSS.0b013e31815f256f
  33. Wade, P. A. 2001. Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum. Mol. Genet. 10, 693-698. https://doi.org/10.1093/hmg/10.7.693
  34. Wu, K., Liang, T., Duan, X., Xu, L., Zhang, K. and Li, R. 2013. Anti-diabetic effects of puerarin, isolated from Pueraria lobata (Willd.), on streptozotocin-diabetogenic mice through promoting insulin expression and ameliorating metabolic function. Food. Chem. Toxicol. 60, 341-347. https://doi.org/10.1016/j.fct.2013.07.077