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Abstract
We consider testing equality of mean functions from two samples of functional data. A novel test based on

the adaptive Neyman methodology applied to the Hotelling’s T-squared statistic is proposed. Under the enlarged
null hypothesis that the distributions of the two populations are the same, randomization methods are proposed
to find a null distribution which gives accurate significance levels. An extensive simulation study is presented
which shows that the proposed test works very well in comparison with several other methods under a variety of
alternatives and is one of the best methods for all alternatives, whereas the other methods all show weak power
at some alternatives. An application to a real-world data set demonstrates the applicability of the method.

Keywords: Functional data analysis, mean functions comparison, two sample testing, permuta-
tion testing, fluorescence spectroscopy.

1. Introduction

We investigate the extensions to Functional Data Analysis (FDA) of the classical one and two sample
tests for the population mean. In the FDA setting, an observation is idealized as a function y(t) with
t in some domain T , where y(t) may be viewed as a realization of an underlying stochastic process
Y(t). We assume each observed function y : T −→ R is a continuous function of t, but in fact the
methods investigated here could be applied to high dimensional data of any structure. As is typical in
FDA, we also assume that the data have already been smoothed and registered to be put on a common
domain (Ramsay and Silverman, 2005).

In the one sample setting, we assume we have a sample y1, . . . , yn which we model as i.i.d. real-
izations of a stochastic process Y(t). We are interested in making inferences about the mean function

µ(t) = E[Y(t)].

We assume that E[Y2(t)] < ∞, so that first and second moments exist. The one sample problem
consists of testing the null hypothesis H0 : µ ≡ µ0, where µ0 is a given function, which without loss
of generality may be taken as µ0 ≡ 0. For the two sample problem, we have observations from two
populations (denoted by y1i where 1 ≤ i ≤ n1 and by y2i where 1 ≤ i ≤ n2) and we wish to test
H0 : µ1 ≡ µ2 where µ1 and µ2 are the mean functions for their respective population. For both testing
problems, the alternative is the general one.
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The preferred test in multivariate analysis is Hotelling’s T-squared test, based on the test statistic
T 2 = ȳ′Σ̂−1ȳ for the one sample problem, and T 2 = (ȳ1−ȳ2)′Σ̂−1(ȳ1−ȳ2) in the two sample setting. For
the one sample setting, ȳ is the sample mean vector and Σ̂ is the sample covariance matrix (Rencher,
2002). The test statistic in the two sample setting is based on the sample means from both samples, and
a “pooled” covariance estimate. These tests can be applied to the vector of values of the functional
data: y = (y(t1), . . . , y(tp))′, where p = dim(y) is the number of points where the functions are
evaluated. The problem that arises in FDA is that the dimension p of the data vectors is somewhat
arbitrary, and one can easily take p > n. Clearly then, Σ̂ will be singular and the test statistic is
undefined. Even if one keeps p < n, p is still somewhat arbitrary, and Σ̂ will typically be poorly
conditioned for many values of p < n. Thus, the results may depend critically on the choice of p.
One of the principles of FDA to which we try to adhere is the Grid Refinement Invariance Principle
(GRIP): any procedure for functional data should be insensitive to the dimension of the representation,
as long as the dimension is sufficiently large to give an accurate representation (Cox and Lee, 2008).
A more formal statement is given below.

A general methodology for constructing tests that typically work well in nonparametric inference
problems with single functions is the Adaptive Neyman methodology (Neyman, 1937; Inglot et al.,
1994). For most such inference problems, there is no optimal test, but the Adaptive Neyman tests
have been shown to work well for many problems in that they have good power against a broad
range of alternatives. In our simulation study presented below, we show that this appears to be the
case for the Adaptive Neyman tests proposed here in that they are competitive for all alternatives
investigated, whereas each of the other testing methods we investigate has very poor power for at least
one alternative.

We now describe the general procedure for constructing Adaptive Neyman tests in the one sample
setting. One begins with the principal component basis vectors v̂1, v̂2, . . . (with the corresponding
eigenvalues λ̂1, λ̂2, . . .) from Σ̂ and computes the projections of the sample mean vector ⟨ȳ, v̂i⟩. By a
Central Limit Theorem argument, these will be approximately independent under the null hypothesis,
and by the properties of principal components, the smaller values of the index j correspond to more
“important” projections. For a range of values of k, one computes

T 2
k =

k∑
j=1

λ̂−1
j

⟨
ȳ, v̂ j

⟩2
.

One also needs normalizing constants ck chosen to be approximately equal to 1/E[T 2
k ]. The final test

statistic is chosen as

T 2 = max
k

ckT 2
k .

The term “adaptive” is used here to refer to this choice of k.
There are several problems to be dealt with. One is the choice of the range of k. Another is the

determination of the normalizing constants ck. Of course, one must also obtain a null distribution for
the test statistic. The extension to the two sample setting also presents some issues. These are all dealt
with at length below.

Fan and Lin (1998) also develop what they refer to as Adaptive Neyman tests for functional data.
However, a critical issue is that they do not use principal components but rather preselected basis
functions, either Fourier basis functions or wavelets. It is clear in the simulation study presented below
that their proposed methodology performs poorly against four out of six alternatives we investigated.
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Shen and Faraway (2004) propose another test which performs poorly on the alternatives where the
Fan and Lin test do well. Recently, Lopes et al. (2012) proposed a version of Hotelling’s T 2 test for
functional data that involves randomly projecting the p dimensional data onto a smaller dimension, but
this too performs poorly against four out of six alternatives. The only tests that performed consistently
well were versions of the adaptive Neyman tests developed here. See Zhang (2011) for a survey of
recent works on hypothesis testing with functional data.

2. Existing Methods

We restrict ourselves to hypothesis testing in the two sample setting. Suppose we have independent
i.i.d. samples y1i(t), i = 1, . . . , n1 from Population 1, and y2i(t), i = 1, . . . , n2 from Population 2. Let
µ1(t) = E[y1i(t)] and µ2(t) = E[y2i(t)]. We assume finite second moments. We want to test the null
hypothesis

H0 : µ1(t) = µ2(t), for all t ∈ T (2.1)

versus the general alternative H1 : µ1(t) , µ2(t) for some t.
It is difficult to derive a null distribution for any of the test statistics presented below. For our

setting, if we extend the null to assume equal distributions (not just equal mean functions) for both
populations, then we can interchange the observations between the 2 populations and the distribution
remains the same, under the null. Thus, we randomly permute the population label (keeping the same
sample sizes), recompute the test statistic, and the proportion of the values of the test statistics larger
than the test statistic for the real data gives us an estimated p-value (assuming H0 is rejected for
larger values of the test statistic). We refer to this assumption of equal distributions under H0 as the
permutation pivotality condition for the two sample setting. In the one sample setting, if we assume
that the distribution is symmetric about the constant 0 (i.e., that −Y(t) has the same distribution as a
stochastic process at Y(t)), then we can apply random sign changes to obtain a null distribution by
randomization. If we assume the y(t) are realizations from a Gaussian process, then the permutation
pivotality condition holds in the one sample setting, and it holds in the two sample setting if we
assume equal covariance functions. Further discussion of permutation or randomization tests can be
found in, for example, Good (2005). The permutation methodology is simple to understand and easy
to implement. Also, assuming the permutation pivotality condition, this procedure has the advantage
of being distribution free, and the test will be an exact level α test because of the properties of the
permutation test and hence will give valid p-values.

We next briefly describe some of the existing testing procedures, all of which can be implemented
with the permutation method.

2.1. The max-T statistic

Perhaps the easiest test statistic we can try is performing a pointwise two sample t-test, and obtain the
maximum of the absolute value of t-statistics over all t, the “max-T” statistic:

max-T = sup
t∈T
|T (t)| , (2.2)

where T (t) denotes the value of the two sample t-statistic based on y11(t), y12(t), . . . , y1n1 (t) and y21(t),
y22(t), . . . , y2n2 (t). One can derive an approximate distribution of the max-T statistic (Taylor et al.,
2007), but we utilize the permutation method described above to get a null distribution. Of course, we
approximate the r.h.s. of (2.2) by taking the maximum over the grid of evaluation points.
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2.2. Testing procedure of Fan and Lin

Fan and Lin (1998) proposed a test that uses truncation of the components of a test statistic to include
only the useful ones. Their paper contains a number of ideas on choosing the number of components,
but we only present a method that is relevant to our problem here. Assume that the domain T is a
finite interval in the real line, and the evaluation points t j are equally spaced. We Fourier transform the
data yi j(tk) with i = 1, 2 denoting the population, j = 1, . . . , ni, and k = 1, . . . , p, so that the functions
are transformed into approximately independent Gaussian random variables and the transform will
compress signals into low frequencies, provided that the data are approximately stationary. This
latter assumption will often not be the case with functional data.

Let y∗i j(ωk), with j = 1, . . . , ni and k = 1, . . . , p be Fourier transformed data, for i = 1, 2. Because
the Fourier transformed data have real and imaginary parts, Fan and Lin (1998) used the following
scheme: let y∗i j(ω1) be the real part of the 0th Fourier frequency, y∗i j(ω2) be the real part of the 1st
Fourier frequency, y∗i j(ω3) be the imaginary part of the 1st Fourier frequency, and so on until we
obtain p such transformed data values. Then consider naı̈ve estimates of the Fourier transformed
mean curves, for i = 1, 2,

ȳ∗i (ω) =
1
ni

ni∑
j=1

y∗i j(ω),

and the variance functions

σ̂2
i (ω) =

1
(ni − 1)

ni∑
j=1

(
y∗i j(ω) − ȳ∗s(ω)

)2
.

Let the standardized difference be

Z(ω) =
ȳ∗1(ω) − ȳ∗2(ω)√
σ̂2

1(ω)
n1
+

σ̂2
2(ω)
n2

and let Z = (Z(ω1), . . . ,Z(ωp))′. When n1 and n2 are large, then Z(ω) is approximately distributed as
N(d(ω), 1), where

d(ω) ≈
µ∗1(ω) − µ∗2(ω)√

σ2
1(ω)
n1
+

σ2
2(ω)
n2

.

Here, µ∗s(ω) and σ2
s(ω) denote the mean and variance of Fourier transformed data, respectively, for

population s = 1, 2. Let d = (d(ω1), . . . , d(ωp))′. So under H0 : µ1 = µ2, we have approximately

Z ∼ N
(
0, Ip

)
.

Now, the maximum LRT statistic for the above problem is ∥Z∥22, which tests for all components of
Z. But we want to test only some components of Z, and we reject H0 for large value of

∑k
j=1 Z(ω j)2,

if we know that only the first k components contain useful information. Fan (1996) and Fan and Lin
(1998) proposed choosing k by

k̂ = arg max
k

k−
1
2

k∑
j=1

(
Z

(
ω j

)2 − 1
)
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then they obtain the adaptive Neyman test statistic

T ∗AN =
1√
2k̂

k̂∑
j=1

(
Z

(
ω j

)2 − 1
)
. (2.3)

With some standardization, they were able to get a asymptotic distribution of T ∗AN and perform the
test. We will not need this as we can apply the permutation methodology to obtain a null distribution.

2.3. Testing procedure of Shen and Faraway

Finally, we describe the testing procedure proposed by Shen and Faraway (2004). They considered a
modified F test in the general functional regression setting, but the method can be specialized for our
problem.

Their proposed test statistic for our setting is

F = (rss0 − rss1)
rss1/(n − 2)

, (2.4)

where

rss1 =

n1∑
i=1

∫
(y1i(t) − ȳ1(t))2 dt +

n2∑
i=1

∫
(y2i(t) − ȳ2(t))2 dt, (2.5)

rss0 =

n1∑
i=1

∫
(y1i(t) − ȳ(t))2 dt +

n2∑
i=1

∫
(y2i(t) − ȳ(t))2 dt, (2.6)

ȳs(t) =
1
ns

ns∑
i=1

ysi(t),

ȳ(t) =
n1ȳ1(t) + n2ȳ2(t)

n1 + n2
.

Assume that the tk are equally spaced. Then we can approximate the integrals in (2.5) and (2.6) by a
rectangular quadrature rule; that is we have

rss1 =
1
p

n1∑
j=1

p∑
k=1

(
y1 j(tk) − ȳ1(tk)

)2
+

1
p

n2∑
j=1

p∑
k=1

(
y2 j(tk) − ȳ2(tk)

)2
,

rss0 =
1
p

2∑
i=1

ni∑
j=1

p∑
k=1

(
yi j(tk) − ȳ(tk)

)2

as approximations to (2.5) and (2.6).
The authors present a distributional properties of the F statistic and provide some results. But

again, we will use the permutation methodology to derive a null distribution and obtain a p-value.

2.4. Random projection Hotelling’s T 2 test

Lopes et al. (2012) proposed random projection of Hotelling’s T 2 test, which in effect reduces a
dimension from p to a smaller dimension. Recall the two-sample Hotelling’s T 2 test from multivariate
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analysis (Rencher, 2002), which has the test statistic

T 2 =
n1n2

n1 + n2
(ȳ1 − ȳ2)′ Σ̂−1 (ȳ1 − ȳ2) ,

where ȳ1 and ȳ2 are vectorized sample mean functions (p× 1), and Σ̂ is the pooled sample covariance
matrix (p × p). If n < p, then Σ̂ will be singular and hence not invertible. Lopes et al. deals with this
problem by defining T

2
k to approximate T 2, where

T
2
k =

n1n2

n1 + n2
(ȳ1 − ȳ2)′EPk

[
Pk

(
P′kΣ̂Pk

)−1
P′k

]
(ȳ1 − ȳ2) (2.7)

with Pk a projection matrix (p × k) and EPk an averaging operator with respect to Pk. The “ran-
dom” part comes from the fact that Pk is drawn randomly from any possible projection matrix of the
same dimension when computing EPk (at each step one randomly draws Pk to compute a quantity
Pk(P′kΣ̂Pk)−1P′k, and after N steps, one averages the resulting quantities - i.e., compute the sample
mean - to obtain EPk [Pk(P′kΣ̂Pk)−1P′k]).

This is somewhat similar to our proposed method but does not have the data-driven adaptive
feature of our method. We will compare all the methods in the simulations section.

3. Adaptively Truncated Hotelling’s T 2 Test

3.1. Derivation of the test statistics

We now propose and describe test statistics, called the adaptively truncated Hotelling’s T 2 test.
Suppose that we have vectors of functions evaluated on a grid y1i, i = 1, . . . , n1 from Population

1 and y2i, i = 1, . . . , n2 from Population 2, all with dimension p. Then, our null hypothesis becomes
H0 : µ1 = µ2, where µi now is an p-dimensional vector. If p < n − 2, we can use the two-sample
Hotelling’s T 2 test

T 2 =
n1n2

n1 + n2
(ȳ1 − ȳ2)′ Σ̂−1 (ȳ1 − ȳ2) , (3.1)

where ȳ1 and ȳ2 are vectorized sample mean functions, and

Σ̂ =
(n1 − 1)S 1 + (n2 − 1)S 2

n1 + n2 − 2
(3.2)

is the pooled sample covariance matrix.
This test has many attractive properties, as it is UMP invariant, admissible, and robust (Muirhead,

1982). But there are some assumptions that must be satisfied in order for this test to be valid. First,
the data must be Gaussian with a common covariance structure, i.e. ȳ1 ∼ N(µ1, n1

−1Σ1) and ȳ2 ∼
N(µ2, n2

−1Σ2), with Σ1 = Σ2 = Σ. Also, in order for the estimated covariance Σ̂ to be non-singular, we
must have that n − 2 > p, where n = n1 + n2.

Since we often have n ≪ p in the functional data setting, and the equal covariance assumption
may not always hold, we try to modify the ordinary two-sample T 2 statistic (3.1) for the functional
data setting. Because of some nice properties possessed by this test, we would like to develop a
testing procedure that takes advantages of its good properties. First, we note that the pooled sample
covariance matrix (3.2) is symmetric and non-negative definite. So we can write

Σ̂ = V̂ D̂ V̂ ′ =
p∑

j=1

λ̂ jv̂ jv̂′j, (3.3)
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where the λ̂ j are the eigenvalues and the v̂ j are the eigenvectors of Σ̂. We propose to keep only the first
k components, for some k ≤ p, and generally k ≪ p. The adaptive Neyman methodology provides
a rationale for selecting a value of k. Then, we substitute in Σ̂ above with k replacing p into the T 2

statistic (3.1) to obtain

T̃ 2
k =

n1n2

n1 + n2
(ȳ1 − ȳ2)′

 k∑
j=1

λ̂−1
j v̂ jv̂′j

 (ȳ1 − ȳ2) =
n1n2

n1 + n2

k∑
j=1

λ̂−1
j

(
(ȳ1 − ȳ2)′ v̂ j

)2
. (3.4)

Note that T̃ 2
p (if p < n) is the Hotelling T 2 statistic, and if k < p, then not all components are included.

Now, the fundamental question is how many components to choose. Borrowing the idea of Fan and
Lin (1998), we propose the following test statistic, which we call the adaptively truncated Hotelling’s
T 2 statistic: maxk ckT̃ 2

k , where ck is some suitable sequence of normalization constants to be deter-
mined.

In practice, we take the maximum over k = 1, . . . , p0 where p0 < p, since many of the trailing
eigenvalues λ̂ j are close to zero and so the T̃ 2

k will be very big for large k. Note that there is large
relative numerical error in computing the small eigenvalues. Hence, we generally want the cutoff p0
to be determined from the ordered sample eigenvalues λ̂ j, and we use

p0 = max
{
j : λ̂ j/λ̂1 > c

}
for some threshold c > 0, where c = 10−16 for our simulation. (3.5)

Then, the technique amounts to finding the maximum of c1T̃ 2
1 , . . . , cp0 T̃ 2

p0
.

Then the next question becomes how to find some suitable normalizations ck. Again, different
choices of ck may lead to different determinations of k, and we present 2 possible ways of handling
this problem. Our goal is that the ckT̃ 2

k all be comparable in magnitude under H0. One way of deriving
the normalizing constant ck is as follows. In the case p < n − 2, recall that

n − p − 1
(n − 2)p

T 2 ∼ Fp,n−p−1. (3.6)

In our problem we want to transform the truncated statistic T̃ 2
k . It is obvious that transformation (3.6)

will not work in the FDA setting, because the covariance term in T̃ 2
k is of rank k < p. However, since

we have a rank k covariance matrix in T̃ 2
k , we may try multiplying T̃ 2

k by

ck =
n − k − 1
(n − 2)k

,

so that our test statistic will be

S ∗ = max
k

ckT̃ 2
k = max

k

n − k − 1
(n − 2)k

T̃ 2
k . (3.7)

Of course, the quantity ckT̃ 2
k will not be distributed exactly as an F, but it will be an approximation

adequate for our purpose. Note that under H0 an F statistic will be about 1, so we achieve our goal of
obtaining ckT̃ 2

k comparable in magnitude under H0.
Another way of obtaining the normalization makes use of the following fact: Let Σ̂ =

∑p
j=1 λ̂ jv̂ jv̂′j

be the sample pooled covariance (3.3) and let Σ be the true covariance matrix. In general, the sample
eigenvalues λ̂ j and the sample eigenvectors v̂ j of sample covariance matrix Σ̂ are consistent estimators
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of true eigenvalues λ j and true eigenvectors v j, respectively, for j = 1, . . . , p (see Hall and Hosseini-
Nasab, 2006). Then under H0 : µ1 = µ2, for large sample sizes n1 and n2, the statistic T̃ 2

k (3.4) is
approximately distributed as a χ2 distribution with k degrees of freedom (Anderson, 2003).

It follows that T̃ 2
k has mean k and variance 2k. Hence, we can normalize T̃ 2

k by (T̃ 2
k − k)/

√
2k, so

that ck = (1 − k/T̃ 2
k )/
√

2k.
Then our test statistic becomes

T ∗ = max
k

1
√

2k

(
T̃ 2

k − k
)
. (3.8)

We called the test statistic S ∗ (3.7) the adaptively truncated Hotelling’s T 2 statistic with F-transform,
and we call T ∗ (3.8) the adaptively truncated Hotelling’s T 2 statistic with χ2-transform.

Having done the transformations, we still do not know the exact distribution of S ∗ nor that of T ∗.
In such a situation, we can resort to permutation methods. As mentioned previously, this procedure
has many advantages. In particular, the procedure is distribution-free and is quite flexible to use.
Nevertheless, it has a major disadvantage in that it is computationally expensive. To obtain the test
statistic S ∗ or T ∗, we must obtain eigenvalues and eigenvectors of Σ̂, which depends on the labeling
from each randomization. We in fact calculate the Singular Value Decomposition (SVD) of the data
matrix centered by subtracting the within group means at each randomization to obtain the eigen
pairs, but as we will see in the coming sections, this can take a lot of computing time for a reasonable
number of randomizations.

3.2. Wald and Wolfowitz modification of adaptively truncated Hotelling’s T 2 statistic

The paper by Wald and Wolfowitz (1944) provides a way of tackling the computational problem.
Rather than computing pooled sample covariance matrix Σ̂, we may compute the “ordinary” or “total”
sample covariance matrix that is independent of labeling,

Σ̂T =
1

n − 1

n∑
i=1

(yi − ȳ)(yi − ȳ)′.

If we were to use Σ̂T in place of Σ̂ in computing (3.7) or (3.8), then we do not need to compute eigen
pairs at each iteration (since Σ̂T is independent of labeling).

Wald and Wolfowitz (1944) showed that T 2 based on Σ̂ is a monotonic function of T 2 based on Σ̂T .
But again this is valid only for the case an invertible Σ̂. However, we implemented the Wald-Wolfowitz
method based on the eigen-decomposition of Σ̂T and compared it with the full SVD method using Σ̂.

To summarize, we have developed four versions of adaptively truncated Hotelling’s T 2 statistics
for functional data and other high dimensional data where the sample covariance matrix is ill condi-
tioned. They are listed in Table 1 (Tests 1 to 4). We will investigate and compare the properties of
these and other tests.

4. Simulation

With the methodology developed in the previous section, we are ready to perform simulations and
present some results. Most of the programming and analysis are done in MATLAB, with the excep-
tion of the smoothing used to generate the functional data, which is done in R. Because of our ran-
domization approach, we are guaranteed all tests achieve the level of significance (we use α = 0.05).
Hence, we concentrate on simulations to assess power.



A Two Sample Test for Functional Data 129

Table 1: A list of 8 testing procedures considered in simulations.
Test Description

1 Full SVD version of adaptively truncated Hotelling’s T 2 with F-transform (3.7)
2 Full SVD version of adaptively truncated Hotelling’s T 2 with χ2-transform (3.8)
3 Wald-Wolfowitz version of adaptively truncated Hotelling’s T 2 with F-transform ((3.7) with Σ̂T in place of Σ̂)
4 Wald-Wolfowitz version of adaptively truncated Hotelling’s T 2 with χ2-transform ((3.8) with Σ̂T in place of Σ̂)
5 Max-T statistic (2.2)
6 Fan and Lin (2.3)
7 Shen and Faraway (2.4)
8 Random projection Hotelling’s T 2 (2.7)

Table 2: A list of 6 alternatives for simulations.
Alternative µ2(t), 0 ≤ t ≤ 1 Name

A 0.0001 constant
B 0.0004(t − 0.5) linear
C 0.0002 sin(2πt) sine
D 0.0001beta5,5(t) beta
E 0.00001beta1000,1000(t) beta spike
F 0.001t sin(e4t) chirp

We construct simulated functional data as follows. First we draw 1,000 i.i.d. random normal
numbers with zero mean and a fixed variance, and then we smooth them with a smoothing spline with
a predetermined smoothing parameter. Repeat this 250 times with the same variance and smoothing
parameter. We use the t values 0, 0.001, 0.002, . . . . The resulting 250 curves form the sample from
Population 1. Next, repeat the procedure again for 250 times, but now add a mean function which is
evaluated at the same 1,000 points as above. Call the resulting curves the samples from Population 2.

Mathematically, we have that Population 1 consists of independent Gaussian process with mean
zero function µ1(t) ≡ 0, where 0 ≤ t ≤ 1. This will be the case throughout the simulation. In
Population 2, we also have independent realizations of a Gaussian process with the same covariance
structure as Population 1, but now the mean function µ2(t) is not identically zero. We have that
n1 = n2 = 250 and p = 1,000.

Recall that we have four versions of our proposed method. We then compare our proposed test
statistics to the following procedures described in Section 2: the max-T statistic, the method of
Fan and Lin (1998), the test proposed by Shen and Faraway (2004), and the random projection of
Hotelling’s T 2 by Lopes et al. (2012). For the random projection of Hotelling’s T 2 test procedure,
we have followed their methodology closely in the implementation (2.7), except that we have com-
puted N = 100 projections for the averaging of the test statistics (instead of N = 30 recommended
from their paper) and let the number of dimension to random projections be k = ⌊p0/2⌋ (instead of
recommended k = ⌊n/2⌋ from their paper), where p0 is from (3.5) and n = n1 + n2, for performance
and numerical stability reasons. We used the permutation methodology to give a null distribution and
obtain a p-value for all proposed tests. For convenience, we have listed the eight tests in Table 1.

We tried six mean functions for Population 2, which are given in Table 2. Alternatives D and E
use scaled versions of Beta densities. The alternatives are depicted in Figure 1.

We have the computation times listed for each test in Table 3. We get a clear picture of the
disadvantage of the full SVD method, but the Wald-Wolfowitz modification actually is very compu-
tationally efficient. In fact, the Wald-Wolfowitz version of our test statistic is the fastest among all the
testing procedures we considered, even though the tests 5, 6, 7 and 8 ran fairly fast as expected.

Now, if we look at the result in Table 3, we see that most methods do well in low frequency
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Figure 1: Plot of all 6 alternatives from Table 2. A dashed line is a horizontal line at 0.

alternatives (A through D), except the test 6 (Fan and Lin, 1998). On the other hand, if the alternative
contains high frequency component (alternatives E and F), then most do a good job except the test 7
(Shen and Faraway, 2004).

Note that all the results in Table 3 are done for one monte carlo run to generate the two sample
with 10,000 permutations to generate null distributions. To truly understand the performance of the
tests, we consider a power study with extended number of monte carlo runs. However, since it takes
too long to run the tests 1 and 2 (see Table 3), we decided to only include the tests 3 to 8 for this
simulation. As before, we generate 500 independent realizations of Gaussian processes, and then add
a µ2(t) function for the alternative (n2 = 250 for Population 2). We run the permutation tests and
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Table 3: A table of p-values obtained from 10,000 permutation iterations of the 8 tests (rows 1 through 8) and 6
alternatives (columns A through F). The last column lists the CPU time for each test in seconds. The null
hypothesis is H0 : µ1(t) = µ2(t) with µ1(t) ≡ 0.

Test µ2(t) (see Table 2) Time(see Table 1) A B C D E F

1 0.0023 0.0509 0.0260 0.0019 0 0 4,016
2 0.0018 0.0532 0.0514 0.0006 0 0 4,016
3 0.0024 0.0273 0.0193 0.0028 0 0 33
4 0.0002 0.0414 0.0468 0.0003 0 0 33
5 0.0076 0.0184 0.1014 0.0022 0 0.0061 86
6 0.1833 0.3142 0.3216 0.2104 0 0 87
7 0.0001 0.0091 0.0103 0 0.2683 0.1361 51
8 0.0881 0.4537 0.0617 0.0054 0 0 49

obtain p-values for all 6 alternatives. Then we generate the random Gaussian processes again and
repeat the process above 100 times, so that we obtain 100 p-values for each alternative. Finally, we
plot the empirical c.d.f.’s of the 100 p-values, to give us some idea of the power at these alternatives.

The results are presented in Figure 2. The way to interpret the picture is that, if a curve dominates
(lies above) other curves in a plot, then the test that corresponds to the dominating curve is more
powerful than other tests. For the constant and linear alternatives, the comparative performance among
the tests are consistent with those of sine and beta alternatives, so we reach the same conclusion for
these alternatives.

From looking at Figure 2, the general conclusion is that test 7 is the best and test 6 performs the
worst in the alternatives A to D, while the situation is reversed for alternatives E and F. Our tests, 3 and
4, do well in all situations. The max-T test (test 5) performs reasonably well (except for Alternative
F), but our tests are usually more powerful. This confirms our findings from previous simulation
results that tests 3 and 4 perform the best overall. Since the test 4 is slightly easier to compute and
often outperforms the test 3, we recommend the use of test 4.

We have also run the simulation at different magnitudes of the alternatives and produced graphs
similar to those in Figure 2. The results were consistent with the results shown in Figure 2, in that
the dominance (and hence the power) remained in the same order at different magnitudes for every
alternative. The results of the extended simulation results will be available from the authors upon
request.

5. Applications

The application of interest concerns a medical device that uses fluorescence spectroscopy for cervical
cancer screening. This technology involves measuring fluorescence spectra at a few sites for each
patient, and we obtain 16 smooth curves for each observation. Figure 3 shows an example of a
fluorescence spectrum for the application. The domain for these functional data is the 2-dimensional
region in the right panel of Figure 3. See Cantor et al. (2011) for more details on this technology.

For the clinical trial, researchers have gathered information on the spectroscopic measurements at
several different sites of cervix, as well other information (such as the device and probe used for the
measurements and biographical information on the subject). They also obtained pathologist’s diagno-
sis of disease state at each site for the purpose of classification of the disease states. The pathologists
also determined the tissue type (squamous, columnar, or mixed). Unfortunately, some preliminary
studies have shown that there are many sources of variability in the measurements. In a previous work
(Pikkula et al., 2007), an experiment was conducted to assess the variability due to the fluorescence



132 Jong Soo Lee, Dennis D. Cox, Michele Follen

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p−value

c
d

f Test 3
Test 4
Test 5
Test 6
Test 7
Test 8

const, close up

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p−value

c
d

f

Test 3
Test 4
Test 5
Test 6
Test 7
Test 8

linear, close up

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p−value

c
d

f

Test 3
Test 4
Test 5
Test 6
Test 7
Test 8

sine, close up

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p−value

c
d

f

Test 3
Test 4
Test 5
Test 6
Test 7
Test 8

beta, close up

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p−value

c
d

f

Test 3
Test 4
Test 5
Test 6
Test 7
Test 8

beta spike, close up

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p−value

c
d

f

Test 3
Test 4
Test 5
Test 6
Test 7
Test 8

chirp, close up

Figure 2: Plots of the empirical c.d.f.’s of the p-values for all 6 alternatives (comparing Tests 3 to 8).

spectroscopy devices, and it was reported that the device differ significantly in their output, even when
they measured the same thing. We would like to perform an another study, controlling for different
factors that may have affected the analysis previously and possibly gave misleading results. We subset
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Figure 3: An example of fluorescence spectra. The left panel shows six sample curves from one observation,
where each curve corresponds to intensity of an excitation wavelength (values on the vertical axis of right panel)
as a function of emission wavelengths (horizontal axis of right panel). The right panel is a representation of

spectra by a heat map, where intensity is represented as a function of emission and excitation wavelengths.
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Figure 4: Comparing pointwise means of the two probes.

the data to make sure that all known possible sources of variability are controlled. Specifically, we
consider only one device and one tissue type (squamous), and select one normal site from the multiple
measurements of a patient.

With everything else controlled as described above, we first look at the 2 probes used with that
device, where some patients were measured using one probe (probe 1) while others were measured us-
ing the other probe (probe 2). In this way we obtain 74 observations from probe 1 and 84 observations
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from probe 2. See Figure 4 for the mean spectra for each probe.
Based on the figures, there seem to be some difference of means in the probes. For an empirical

study, this descriptive conclusion may by enough, but we would like to analytically determine the
significance. Thus, we perform the adaptive Hotelling’s T 2 test with the χ2-transform version. The
result is significant (p-value = 0.0002), which provides a strong evidence that the probes are different.
Hence, for the future investigation, we need to somehow either control for this effect or remove it
(e.g., by better probe design).

6. Conclusion

The overall result of the adaptively truncated Hotelling’s T 2 method is satisfactory in the simulation
study and applications.

There are unresolved issues, some of which we now list as potential future research questions.
First, there may be a concern of bias of the sample eigenvalues. In general, the leading sample
covariance eigenvalues tend to overestimate the true eigenvalues, and the trailing sample eigenvalues
tend to underestimate their population counterparts, but eigenvalue bias correction is a difficult task
(see, e.g. Johnstone, 2001). Also, establishing the consistency for the adaptively truncated Hotelling’s
T 2 test is challenging. Since we are dealing with functional data, we want to investigate when p→ ∞,
i.e., the case where our sampled vector converges to a sample function as we make the grid finer.
Hence, it will be desirable to investigate the behavior of both the sample sizes n1 and n2, as well as
dimension (number of grid points) p, of our test statistics to go to infinity. Additionally, it would be
desirable to relax the assumption of equal covariances. One could use the same statistic, although
there may be better test statistics, but certainly not use permutations to get a null distribution. A
simulation based approach could be used based on an assumption of Gaussian processes.

Despite these unresolved issues, we conclude from our study that the method gives good results
in a variety of situations and is a useful functional data analytic tool.
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