DOI QR코드

DOI QR Code

GLOBAL SOLUTIONS TO CHEMOTAXIS-HAPTOTAXIS TUMOR INVASION SYSTEM WITH TISSUE RE-ESTABLISHMENT

  • Kang, Ensil (Department of Mathematics Chosun University) ;
  • Lee, Jihoon (Department of Mathematics Chung-Ang University)
  • Received : 2015.01.17
  • Accepted : 2015.02.04
  • Published : 2015.02.15

Abstract

In this paper, we consider the chemotaxis-haptotaxis model of tumor invasion with the proliferation and tissue re-establishment term in dimensions one and two. We show the global in time existence of a unique classical solution for the the model in two dimensional spatial domain without any restrictions on the coefficients.

Keywords

Acknowledgement

Supported by : Chosun University

References

  1. A. R. A. Anderson, M. A. J. Chaplain, E. J. Newman, R. J. C. Steele, and A. M. Thomson, Mathematical modelling of tumor invasion and metastasis, J. Theor. Medicine 2 (2000), 129-154. https://doi.org/10.1080/10273660008833042
  2. M. A. J. Chaplain, The mathematical modelling of tumor angiogenesis and invasions, Acta Bio theoretica 43 (1995), 387-402.
  3. M. A. J. Chaplain and A. R. A. Anderson,Mathematical modelling of tissue invasion, in: L. Preziosi (Ed.), Cancer Modelling and Simulation, Chapman & Hall/CRT, 2003, 267-297.
  4. M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci. 15 (2005), 1685-1734. https://doi.org/10.1142/S0218202505000947
  5. M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue : dynamic heterogeneity. Netw. Heterog. Media 1 (2006), 399-439. https://doi.org/10.3934/nhm.2006.1.399
  6. J. Fan and K. Zhao, A note on a 3D haptotaxis model of cancer invasion, to appear in Appl. Math. Res. Express.
  7. R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Res. 56 (1996), 5745-5753.
  8. E. Kang and J. Lee, Chemotaxis-haptotaxis model for tumor invasion with generalized growth term, preprint, (2012), 15 pages.
  9. A. J. Perumpanani and H. M. Byrne, Extracellular matrix concentration exerts selection pressure on invasive cells, European Journal of Cancer 8 (1999), 1274-1280.
  10. Z. Szymanska, C. Morales-Rodrigo, M. Lachowicz, and M. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions, Math. Models Methods Appl. Sci. 19 (2009), 257-281. https://doi.org/10.1142/S0218202509003425
  11. Y. Tao, Global existence of classical solutions to a combined chemotaxishaptotaxis model with logistic source, J. Math. Anal. Appl. 354 (2009), 60-69. https://doi.org/10.1016/j.jmaa.2008.12.039
  12. Y. Tao, Global existence for a haptotaxis model of cancer invasion with tissue remodeling, Nonlinear Anal-Real World Appl. 12 (2011), 418-435. https://doi.org/10.1016/j.nonrwa.2010.06.027
  13. Y. Tao and M. Wang, Global solution for a chemotactic-haptotactic model of cancer invasion, Nonlinearity 21 (2008), 2221-2238. https://doi.org/10.1088/0951-7715/21/10/002
  14. Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant J. Differ. Eq. 257 (2014), 784-815. https://doi.org/10.1016/j.jde.2014.04.014
  15. C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal. 38 (2007), 1694-1713. https://doi.org/10.1137/060655122

Cited by

  1. Mathematical modelling of cancer invasion: The multiple roles of TGF-β pathway on tumour proliferation and cell adhesion vol.27, pp.10, 2017, https://doi.org/10.1142/S021820251750035X