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TEMPORAL REGULARITY OF THE EULER
EQUATIONS

Young Ja Park*

Abstract. This paper investigates temporal regularity of solu-
tions for the incompressible Euler equations in a critical Besov space

B
d
p
+1

p,1 (Rd) for 1 ≤ p ≤ d.

1. Main theorem

We are interested in the non-stationary Euler equations of an ideal
incompressible fluid

∂

∂t
v + (v,∇)v = −∇p,(1.1)

div v = 0.

Here v(x, t) = (v1, v2, · · · , vd) is the Eulerian velocity of a fluid flow and

(v,∇)vk =
d∑

i=1

vi ∂i vk, k = 1, 2, · · · , d with ∂i ≡ ∂
∂xi

.

The best local existence and uniqueness results known for the Euler
equations (1.1) in Besov spaces are a series of theorems in the space

B
d
p
+1

p,1 (Rd) with 1 ≤ p ≤ ∞ (see the introductions in [2, 5, 6] for details
and the references therein). J. Bourgain and D. Li have very recently
posted in [1] strong local ill-posedness results in the Sobolev spaces

W
d
p
+1,p(Rd) for 1 < p < ∞ and in the Besov spaces B

d
p
+1

p,q (Rd) with
1 < p < ∞, 1 < q ≤ ∞ and d = 2 or 3.
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While a lot of observations have been made on the spatial regular-
ity, this paper will cover the temporal regularity of the Euler equations.
More precisely, all the results of the existence theory for the Euler equa-
tions insist only on the spatial continuity of the solutions, whereas this
paper investigates the temporal regularity of the solutions. To do this,
we introduce the trajectory flows X(x, t) along v satisfying a system of
ordinary differential equations

{
∂

∂t
X(x, t) = v(X(x, t), t),
X(x, 0) = x.

(1.2)

Here we use an abbreviation ṽ(x, t) = v(X(x, t), t). Then our main result
can be described as follows.

Theorem 1.1. Let 1 ≤ p ≤ d, and v be a solution for the Euler equa-

tions (1.1) staying inside of L∞([0, T ];B
d
p
+1

p,1 ). Then v is continuous with

respect to time on [0, T ] with values in B
d
p
+1

p,1 (Rd) and ṽ is continuously

differentiable on [0, T ] with values in B
d
p
+1

p,1 (Rd).

Notation. Throughout this paper, the notation X . Y means that
X ≤ CY , where C is a fixed but unspecified constant. Unless explicitly
stated otherwise, C may depend on the dimension d and various other
parameters (such as exponents), but not on the functions or variables
(u, v, f, g, xi, · · · ) involved.

2. Preliminary estimates

We begin with some notations. Let S(Rd) be the Schwartz class of
rapidly decreasing functions. Consider a nonnegative radial function
χ ∈ S(Rd) satisfying supp χ ⊂ {ξ ∈ Rd : |ξ| ≤ 5

6}, and χ = 1 for |ξ| ≤ 3
5 .

Set hj(ξ) ≡ χ(2−j−1ξ)− χ(2−jξ), and it can be easily seen that

χ(ξ) +
∞∑

j=0

hj(ξ) = 1 for ξ ∈ Rd.

Let ϕj and Φ be functions defined by ϕj ≡ F−1(hj), j ≥ 0 and Φ ≡
F−1(χ), where F represents the Fourier transform on Rd. Note that ϕj

is a mollifier of ϕ0, that is, ϕj(x) ≡ 2jdϕ0(2jx) (or ϕ̂j(ξ) = ϕ̂(2−jξ)).
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One can readily check that

Φ(x) +
k−1∑

j=0

ϕj(x) = 2kdΦ(2kx) for k ≥ 1.

For f ∈ S ′(Rd) and j ∈ Z, denote ∆jf ≡ hj(D)f = ϕj ∗ f if j ≥ 0,
∆−1f ≡ Φ ∗ f and ∆jf = 0 if j ≤ −2. The partial sums are also defined

as Skf ≡
k∑

j=−∞
∆jf for k ∈ Z.

Assume that s ∈ R, and 1 ≤ p, q ≤ ∞. Then the Besov spaces
Bs

p,q(Rd) are defined by

f ∈ Bs
p,q(Rd) ⇔ {‖2js∆jf‖Lp}j∈Z ∈ lq

and homogeneous Besov spaces Ḃs
p,q(Rd) are

f ∈ Ḃs
p,q(Rd) ⇔ {‖2jsϕj ∗ f‖Lp}j∈Z ∈ lq.

The corresponding spaces of vector-valued functions are denoted by the
bold faced symbols. For example, the product space Bs

p,q(Rd)d is denoted
by Bs

p,q(Rd) ≡ Bs
p,q(Rd)d.

We summarize some of the estimates which will be used later. We first
recall the Bony’s para-product formula which decomposes the product
fg of two functions f and g into three parts:

fg = Tfg + Tgf + R(f, g),

where Tfg represents Bony’s para-product of f and g defined by Tfg ≡∑
j Sj−2f ∆jg and R(f, g) denotes the remainder of the para-product

R(f, g) ≡ ∑
|i−j|≤1 ∆if∆jg. The estimates of para-product parts in

Bs
p,1(Rd) are provided as follows.

Remark 2.1. Let s ∈ R and 1 ≤ p ≤ ∞.
1. (Para-product estimate) For any f, g ∈ Bs

p,1(Rd), we have

‖Tfg‖Bs
p,1

. ‖f‖L∞‖g‖Bs
p,1

,

and we also have for each i = 1, 2, · · · , d,

‖T∂ifg‖Bs
p,1

. ‖f‖L∞‖∇g‖Bs
p,1

.

2. (Product formula) For s > 0 and any f, g ∈ Bs
p,1(Rd), we have

‖fg‖Bs
p,1

. ‖f‖L∞‖g‖Bs
p,1

+ ‖f‖Bs
p,1
‖g‖L∞
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and

‖f · ∇g‖Bs
p,1

. ‖f‖L∞‖∇g‖Bs
p,1

+ ‖∇f‖Bs
p,1
‖g‖L∞ .

3. (Commutator estimate) For any differentiable function f and
any function g, we have the following commutator estimate

‖ [f, ∆j ] ∂ig‖Lp . ‖∇f‖L∞‖g‖Lp , i = 1, 2, · · · , d,

where the commutator [f, ∆j ] h is defined as f∆jh−∆j(fh).
4. For any vector field u = (u1, u2, · · · , ud) and a function g, we have

∞∑

j=−∞
2js ‖(Sju,∇)∆jg −∆j(u,∇)g‖Lp

. ‖u‖Bs
p,1
‖∇g‖L∞ + ‖g‖Bs

p,1
‖∇u‖L∞ .(2.1)

We also have the estimate
∞∑

j=−∞
2js ‖(Sj−2u,∇)∆jg −∆j(u,∇)g‖Lp

. ‖∇u‖Bs
p,1
‖g‖L∞ + ‖g‖Bs

p,1
‖∇u‖L∞ .(2.2)

5. (Pressure estimate) For s > 0 and any pair of divergence free
vector fields u and v, we have

‖π(u, v)‖Bs+1
p,1

. ‖∇u‖L∞‖v‖Bs+1
p,1

+ ‖u‖Bs+1
p,1
‖∇v‖L∞ .(2.3)

We also have

‖π(u, v)‖Bs
p,1

. ‖∇u‖L∞‖v‖Bs
p,1

+ ‖u‖Bs+1
p,1
‖v‖L∞ ,(2.4)

and

‖π(u, v)‖Bs
p,1

. ‖∇v‖L∞‖u‖Bs
p,1

+ ‖v‖Bs+1
p,1
‖u‖L∞ ,(2.5)

where we set

π(u, v) ≡
d∑

i,j=1

∇∆−1∂iu
j∂jv

i

= ∇∆−1div ((u,∇)v).

6. (Composition estimate) For 0 ≤ s < 1, F ∈ Bs
p,1, and bi-

Lipschitz volume-preserving map X : Rd → Rd, we have the fol-
lowing estimate:

‖F ◦X‖Bs
p,1

.
(
1+log(‖∇xX‖L∞‖∇xX−1‖L∞)

)‖F‖Bs
p,1

.
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The proofs of this properties can be found in [6]. In it, the same
estimates are proved for the special case p = 1, however, all the estimates
in [6] are valid for arbitrary p with 1 ≤ p ≤ ∞. The original version of the
Composition estimate was proved by M. Vishik in the space B0

∞,1(Rd)
in [9], and D. Chae later generalized it to the Besov spaces B0

p,q(Rd) and
the Triebel-Lizorkin spaces F 0

p,q(Rd). The version in Bs
p,1(Rd) can be

considered as a slight generalization of those.

3. The proof

We choose a solution v for the Euler equations (1.1) staying inside of

C([0, T ];B
d
p
+1

p,1 ), and we set w` ≡ S`v and w̃` ≡ S`ṽ for ` ∈ N. We will
demonstrate that the two sequences {w`}`∈N and

{ ˙̃w`

}
`∈N converge to

v and ˙̃v in L∞([0, T ];B
d
p
+1

p,1 ), respectively and also prove that each w`

and each ˙̃w` are continuous with respect to time on [0, T ] with values in

B
d
p
+1

p,1 (Rd). Then the argument will produce the desired result.

Step 1. Take the ∆j operator and add the term (Sjv,∇)∆jv on both
sides of (1.1) and we obtain that

∂

∂t
∆jv + (Sjv,∇)∆jv = (Sjv,∇)∆jv −∆j(v,∇)v −∆j∇p

for j ∈ N. The interchangeability of the two operators ∂
∂t and ∆j in the

left hand side follows from the fact that ∂
∂tv ∈ L∞([0, T ]× Rd).

Consider the trajectory flow {Xj(x, t)} along Sjv defined by the so-
lutions of the ordinary differential equations

{
∂
∂tXj(x, t) = (Sjv) (Xj(x, t), t),

Xj(x, 0) = x

(observe divSjv = 0 implies that x 7→ Xj(x, t) is a volume preserving
mapping). Then since t 7→ ‖∆jv(t)‖Lp is absolutely continuous on [0, T ],
we get

‖∆jv(t)‖Lp ≤ ‖∆jv0‖Lp +
∫ t

0
‖∆j∇p‖Lp dτ

+
∫ t

0
‖(Sjv,∇)∆jv −∆j((v,∇)v)‖Lp dτ,
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where v0 ≡ v(0). This implies that for t ∈ [0, T ]

‖v(t)−w`(t)‖
B

d
p +1

p,1

.
∑

j≥`

2j( d
p
+1)‖∆jv(t)‖Lp

.
∑

j≥`

2j( d
p
+1)‖∆jv0‖Lp +

∫ t

0

∑

j≥`

2j( d
p
+1)‖∆j∇p ‖Lp dτ

+
∫ t

0

∑

j≥`

2j( d
p
+1)‖(Sj−2v,∇)∆jv−∆j((v,∇)v)‖Lp dτ.

The first term of the right hand side converges to zero as ` tends to

infinity because v0 ∈ B
d
p
+1

p,1 (Rd). By virtue of the properties 4 and 5 in

Remark 2.1 and the fact that v(t) ∈ B
d
p
+1

p,1 (Rd), the second and third
terms of the right hand side also converge to zero as ` goes to infinity.

Hence the sequence {w`}`∈N converges to v in L∞([0, T ];B
d
p
+1

p,1 ).

Step 2. By the same argument used in Step 1, we have
∂ṽ

∂t
(x, t) = −(∇p)(X(x, t), t).(3.1)

Then we obtain

‖∆j
˙̃v(t)‖Lp ≤ ‖∆j(∇p)(X(·, t), t)‖Lp = ‖∆j(∇p)‖Lp ,(3.2)

where the dot symbol represents the partial derivative with respect to
t, that is, ˙≡ ∂

∂t . It is important to obtain the following estimate:

Lemma 3.1. We have

‖(∇p)(X(·, t), t)‖
B

d
p +1

p,1

. ‖∇p‖
B

d
p +1

p,1

.(3.3)

Proof. First, we take ∇-operator on both sides of (1.2) to get the
identity

∂

∂t
∇xX(x, t) = (∇u)(X(x, t), t) · ∇xX(x, t).(3.4)

Taking L∞-norm on both sides of (3.4), we have

‖∇xX(·, t)‖L∞ ≤ 1 +
∫ t

0
‖∇u(X(·, τ), τ)‖L∞‖∇xX(·, τ)‖L∞ dτ.

Gronwall’s inequality yields that

‖∇xX(·, t)‖L∞ ≤ exp
{∫ t

0
‖∇u(·, τ)‖L∞dτ

}
≤ C.
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Similarly, we can get ‖∇xX−1(·, t)‖L∞ ≤ C.

Taking Ḃ
d
p
+1

p,1 -norm on both sides of

X(x, t)− x =
∫ t

0
v(X(x, τ), τ)dτ,

we have

‖∆j(X(·, t)− ·)‖
Ḃ

d
p +1

p,1

≤
∫ t

0
‖∆jv(X(·, τ), τ)‖

Ḃ
d
p +1

p,1

dτ.(3.5)

Owing to the fact that d
p + 1 ≥ 2 and the Bersteins’s inequality, we

can notice that the left side of (3.5) is greater than equal to a constant
times of ‖X(·, t)‖

Ḃ
d
p +1

p,1

. On the other hand, we can find that the inte-

grand of the right side of (3.5) is less than equal to a constant times of
‖X(·, τ)‖

Ḃ
d
p +1

p,1

+ 1 by using the homogeneous version of the properties

2, 6 in Remark 2.1 (we may use the homogeneous version of the prop-
erty 2 repetitively if necessary). Therefore Gronwall’s inequality implies
‖X(·, t)‖

Ḃ
d
p +1

p,1

is finite for each t ∈ [0, T ].

In all, by the same argument in above, using the property 2 (repeti-
tively if necessary) and property 6 in Remark 2.1 to the right side of the
following estimate:

‖(∇p)(X(·, t), t)‖
B

d
p +1

p,1

≤ ‖∆−1(∇p)(·, t)‖Lp +
∞∑

j=0

‖∆j [{D(∇p)(X(·, t), t)}(∇X)(·, t)] ‖Lp ,

we can get the estimate (3.3).

Lemma 3.1 implies two facts; one is that ‖(∇p)(X(·, t), t)‖
B

d
p +1

p,1

is

finite. Also, from (3.1) (or (3.2)), we know ‖ ˙̃v(t)‖
B

d
p +1

p,1

is finite.(Let us

keep in mind this fact for a reference at Step 3.) Therefore from the
estimate

‖ ˙̃v(t)− ˙̃w`(t)‖
B

d
p +1

p,1

.
∑

j≥`

2j( d
p
+1)‖∆j

˙̃v(t)‖Lp

.
∑

j≥`

2j( d
p
+1) ‖∆j∇p(X(·, t), t)‖Lp ,
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we can observe that
{ ˙̃w`

}
`∈N also converges to ˙̃v in L∞([0, T ];B

d
p
+1

p,1 ).

Step 3. Applying the properties 2 and 5 in Remark 2.1 to the Euler
equations (1.1), we have

‖v̇‖
B

d
p
p,1

≤ ‖(v,∇)v‖
B

d
p
p,1

+ ‖∇p ‖
B

d
p
p,1

. ‖v‖
B

d
p
p,1

‖v‖
B

d
p +1

p,1

.

Hence we obtain v̇ ∈ L∞([0, T ];B
d
p

p,1). Sobolev imbedding theorem now

delivers that v ∈ W 1,∞([0, T ];B
d
p

p,1) ⊂ C([0, T ];B
d
p

p,1).

We recall that ˙̃v ∈ L∞([0, T ];B
d
p
+1

p,1 ) from Step 2. We can also differ-
entiate both sides of the Euler equations (3.1)

∂2ṽ

∂t2
(x, t) = −(∇ṗ)(X(x, t), t)− [(v,∇)∇p](X(x, t), t).

Then we take B
d
p
−[ d

p
]

p,1 -norm on both sides to get

‖¨̃v‖
B

d
p−[ d

p ]

p,1

. ‖∇ṗ ‖
B

d
p−[ d

p ]

p,1

+ ‖[(v,∇)∇p]‖
B

d
p−[ d

p ]

p,1

,

where [a] represents the greatest integer less than equal to a. The first
term of the right hand side is less than equal to some constant times of
‖v̇‖

B
d
p
p,1

‖v‖
B

d
p +1

p,1

and the second term is finite. Therefore we can see that

v ∈ W 2,∞([0, T ];B
d
p
−[ d

p
]

p,1 ) ⊂ C1([0, T ];B
d
p
−[ d

p
]

p,1 ).

Step 4. From the estimate

‖w`(s)− w`(t)‖
B

d
p +1

p,1

= ‖S`(v(s)− v(t))‖
B

d
p +1

p,1

.
`+1∑

j=−1

2j( d
p
+1)‖∆j(v(s)− v(t))‖Lp

. 22(`+1)‖v(s)− v(t)‖
B

d
p
p,1

together with the fact that v ∈ C([0, T ];B
d
p

p,1), we can deduce that each

w` is continuous on [0, T ] with values in B
d
p
+1

p,1 (Rd). Therefore this fact
together with the result of Step 1 implies that v is continuous with

respect to time on [0, T ] with values in B
d
p
+1

p,1 (Rd).
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Step 5. Finally, from the similar estimate

‖ ˙̃w`(s)− ˙̃w`(t)‖
B

d
p +1

p,1

= ‖S`( ˙̃v(s)− ˙̃v(t))‖
B

d
p +1

p,1

. 2(`+1)([ d
p
]+1)‖ ˙̃v(s)− ˙̃v(t)‖

B
d
p−[ d

p ]

p,1

together with the fact that ˙̃v ∈ C([0, T ];B
d
p
−[ d

p
]

p,1 ), we can deduce that

each ˙̃w` is continuous on [0, T ] with values in B
d
p
+1

p,1 (Rd). Therefore the

limit ˙̃v is continuous on [0, T ] with values in B
d
p
+1

p,1 (Rd).
The proof is now completed. ¤

Acknowledgement

The author would like to thank Prof. Hee Chul Pak for his help and
valuable comments for this paper.

References

[1] J. Bourgain and D. Li, Strong ill-posedness of the incompressible Euler equa-
tions in borderline Sobolev spaces, preprint (2013).

[2] D. Chae, Local existence and blow-up criterion for the Euler equations in the
Besov spaces, Asymptotic Analysis 38 (2004), 339-358.

[3] J.-Y. Chemin, Perfect incompressible fluids, Clarendon Press, 1981.
[4] A. Majda and A. Bertozzi, Vorticity and incompressible flow, Cambridge Uni-

versity Press, 2002.
[5] H. C. Pak and Y. J. Park, Existence of solution for the Euler equations in a

critical Besov space B1
∞,1(Rn), Comm. Partial Diff. Eq. 29 (2004), 1149-1166.

[6] H. C. Pak and Y. J. Park, Persistence of the incompressible Euler equations in

a Besov space Bd+1
1,1 (Rd), Preprint.

[7] E. M. Stein, Harmonic analysis; real-variable methods, orthogonality, and os-
illatory integrals, Princeton Mathematical Series, 43, 1993.

[8] H. Triebel, Theory of function spaces II, Birkhäuser, 1992.
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