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TEMPORAL REGULARITY OF THE EULER
EQUATIONS

YouNG JA PARK*

ABSTRACT. This paper investigates temporal regularity of solu-
tions for the incompressible Euler equations in a critical Besov space

R
By, (RY) for1<p<d

1. Main theorem

We are interested in the non-stationary Euler equations of an ideal
incompressible fluid

0
(1.1) pri + (v, V)v = =Vp,
divv = 0.
Here v(z,t) = (v',v?,--- ,v%) is the Eulerian velocity of a fluid flow and
d
(U,V)Uk = Zvi oivF, k=1,2,---,d with §; = 8%1
i=1

The best local existence and uniqueness results known for the Euler

equations (1.1) in Besov spaces are a series of theorems in the space
d

4y
1 (R%) with 1 < p < oo (see the introductions in [2, 5, 6] for details
and the references therein). J. Bourgain and D. Li have very recently

posted in [1] strong local ill-posedness results in the Sobolev spaces

d 441
Wit P(RY) for 1 < p < oo and in the Besov spaces B;, (R?Y) with
l<p<oo,l1<g<ooandd=2or 3.
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While a lot of observations have been made on the spatial regular-
ity, this paper will cover the temporal regularity of the Euler equations.
More precisely, all the results of the existence theory for the Euler equa-
tions insist only on the spatial continuity of the solutions, whereas this
paper investigates the temporal regularity of the solutions. To do this,
we introduce the trajectory flows X (z,t) along v satisfying a system of
ordinary differential equations

(1.2) {;X(ﬂ«"vt) = v(X(z,1),1),

X(z,0) =u=x.
Here we use an abbreviation o(z,t) = v(X(z,t),t). Then our main result
can be described as follows.
THEOREM 1.1. Let 1 < p < d, and v be a solution for the Euler equa-
tions (1.1) staying inside of L>°([0, T"; BE—IH). Then v is continuous with
respect to time on [0,T] with values in Bf:l(Rd) and U is continuously

411
differentiable on [0, T with values in B;;r (R9).

NoTATION. Throughout this paper, the notation X <Y means that
X < CY, where C is a fixed but unspecified constant. Unless explicitly
stated otherwise, C' may depend on the dimension d and various other
parameters (such as exponents), but not on the functions or variables
(u,v, f,g,x;,- ) involved.

2. Preliminary estimates

We begin with some notations. Let S(R?) be the Schwartz class of
rapidly decreasing functions. Consider a nonnegative radial function
x € S(R?) satisfying supp xy C {€ € R4 : [¢] < %}, and xy =1 for |{] < %
Set hj(€) = x(27771¢) — x(2779€), and it can be easily seen that

x(&) + Zhj(ﬁ) =1 for £ e RY
=0

Let ¢; and ® be functions defined by p; = F1(h;), j > 0 and & =
F~Y(x), where F represents the Fourier transform on R?. Note that ;
is a mollifier of g, that is, ;j(z) = 29%y(272) (or ¢;(&) = H(279¢)).
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One can readily check that
k—1

®(z) + Z @;(x) = 2M®(2%z) for k > 1.
7=0

For f € §'(RY) and j € Z, denote A;f = hj(D)f = ¢; = f if j > 0,
A_1f=®xfand A;f =0if j < —2. The partial sums are also defined
k

as Spf = Z Aj;f for k € Z.

Jj=—00
Assume that s € R, and 1 < p,q < oo. Then the Besov spaces
Bg’q(]Rd) are defined by

f € By ((RY) & {|27°A;f|| 1o ez € 19
and homogeneous Besov spaces B;q(Rd) are

f € BS (RY) & {]|127%; * fll1o}jez € 10

The corresponding spaces of vector-valued functions are denoted by the
bold faced symbols. For example, the product space B;Q(Rd)d is denoted
by B; ,(R?) = Bj (R%)4.

We summarize some of the estimates which will be used later. We first
recall the Bony’s para-product formula which decomposes the product
fg of two functions f and g into three parts:

fg=Trg +Tyf + R(f,9),

where T'rg represents Bony’s para-product of f and g defined by Tyg =
Zj Sij—aof Ajg and R(f,g) denotes the remainder of the para-product
R(f,g9) = Z\i—ﬂgl A;ifAjg. The estimates of para-product parts in
B;l(Rd) are provided as follows.

REMARK 2.1. Let se Rand 1 < p < oo.
1. (Para-product estimate) For any f,g € Bf;,l(Rd), we have

Hng”B;1 < HfHLOC”g”B;J;

and we also have for each 1 =1,2,--- ,d,
1Toirglls , < (1l lIVylBs , -
2. (Product formula) For s > 0 and any f,g € B;l(Rd), we have

1£9lls;, S 1Flz<lgllzs , + 115, llgllz=
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and
1 Valls: | S Iflle=lVals:, + IV Fllzs, lgllooe-

3. (Commutator estimate) For any differentiable function f and
any function g, we have the following commutator estimate

H [f7 A]] aZgHLp S ”foL‘X’HgHLpa 1= 1727 T 7d7

where the commutator [f, Aj]h is defined as fA;h — Aj(fh).
4. For any vector field v = (uy, ua, -+ ,uq) and a function g, we have

Y 220(Sju, V)Ag — Aj(u, Vgl

Jj=—00
(2.1) S llulles IV gl + llgllz: , 1Vl
We also have the estimate
oo
> 20|(Sj2u, V)Ajg — Aj(u, Vgl 1,
j=—00
(2.2) S IVullss  Nlgllze + [lgllss , [[VullLee.

5. (Pressure estimate) For s > 0 and any pair of divergence free
vector fields u and v, we have

23)  rn ) e < [Vl [olgess + ullges [ Vol
We also have
(2.4) lm(u, v)llgs |, < IVullLellvlis; , + lullgsillvllze,
and
(2.5) I (w, 0)llgs | S (IVollielulls; , + [[vllgsillulle,
where we set
d
m(u,v) = Z VA oul 90"
ij=1
= VA~ div ((u, V)v).

6. (Composition estimate) For 0 < s < 1, F' € B, and bi-
Lipschitz volume-preserving map X : R? — R¢, we have the fol-

lowing estimate:

IF o X|lps, < (1+10g(|Vu Xl Vo X 1) [ Fl 5 -
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The proofs of this properties can be found in [6]. In it, the same
estimates are proved for the special case p = 1, however, all the estimates
in [6] are valid for arbitrary p with 1 < p < oo. The original version of the
Composition estimate was proved by M. Vishik in the space Bgo’l(]Rd)

in [9], and D. Chae later generalized it to the Besov spaces ng(]Rd) and

the Triebel-Lizorkin spaces F q(Rd). The version in B;”l(Rd) can be
considered as a slight generalization of those.

3. The proof

We choose a solution v for the Euler equations (1.1) staying inside of

|
C’([O,T];BIL’,’;r ), and we set w; = Spv and wy = S0 for £ € N. We will

demonstrate that the two sequences {wy},cy and {ﬁ}g} ey converge to
d

. =41
v and ¥ in. Le°(]0,T7; B/, ), respectively and also prove that each wy
and each wy are continuous with respect to time on [0, 7] with values in

41
BI")’: (RY). Then the argument will produce the desired result.

Step 1. Take the A; operator and add the term (S;v, V)Aj v on both
sides of (1.1) and we obtain that

gt Ajv + (Sjv, V)Aju = (Sjv, V)Aju — Aj(v, V)v — A;Vp

for j € N. The interchangeability of the two operators % and A; in the
left hand side follows from the fact that %v € L>([0,T] x R%).

Consider the trajectory flow {X;(z,t)} along Sjv defined by the so-
lutions of the ordinary differential equations

{ 2Xj(z,t) = (Sjv) (Xj(z,t),t),
Xj(.’L’,O) =

(observe divSjv = 0 implies that z — Xj;(x,t) is a volume preserving
mapping). Then since t — ||Ajv(t)|Lr is absolutely continuous on [0, T7,
we get

t
18500l < 18500l + [ 18,95y, dr

t
4 /0 1850, V) A0 — Aj((0, D))l di,
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where vg = v(0). This implies that for ¢ € [0, 7]
(d
lo®)—we @l g0 D2 A0 s

p,1 j=>e
< Z2j(z+1)||AjU0HLP+/ S PG )A;Vplly, dr
P>t 05>
t .
+/ Z 2](%+1) 1(Sj—2v, V)Aju—Aj((v, V)v)||, dT.
04
j=>t

The first term of the right hand side converges to zero as ¢ tends to
441
infinity because vy € B/, (R%). By virtue of the properties 4 and 5 in

441
Remark 2.1 and the fact that v(t) € B}, (R?), the second and third

terms of the right hand side also converge to zero as ¢ goes to infinity.

dyq
Hence the sequence {wy},y converges to v in L>([0,T]; B, ).

Step 2. By the same argument used in Step 1, we have

O (2t) = —(Vp) (X (2, 1).1).

(3.1) =

Then we obtain
(3.2) 1255(8)|lLe < 1A (VP)(X (1), )l = 1A5(VD) s »

where the dot symbol represents the partial derivative with respect to
t, that is, "= %. It is important to obtain the following estimate:

LEMMA 3.1. We have
(3.3) [(VR)(X (0, Ol apy SIVDPI ay,
BP B,

p,1
Proof. First, we take V-operator on both sides of (1.2) to get the
identity
0
(3.4) asz(l', t) = (Vu)(X(x,t),t) - Vo X (z,1).
Taking L°°-norm on both sides of (3.4), we have

t
VX (- 1)L <1 +/0 IVu(X(,7), )L [Ve X (- 7)l[Lee dr.

Gronwall’s inequality yields that

t
IVaX ()l < exp{ / ||Vu<-m>||wzr} <c
0
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Similarly, we can get ||V, X ~!(-,t)||ln~ < C.
d

g
Taking B); -norm on both sides of

X(z,t) -2 _/0 (X (z,7), 7)dr,

we have

t
(3.5) 1A (XCt) =), ays S/ 120X (), T, gy dT
B, 0 B

p,1

Owing to the fact that % + 1 > 2 and the Bersteins’s inequality, we
can notice that the left side of (3.5) is greater than equal to a constant
times of [| X (-, t)|| . 4,,. On the other hand, we can find that the inte-
BP
p,1
grand of the right side of (3.5) is less than equal to a constant times of
| X(-,7)|| . ¢,y + 1 by using the homogeneous version of the properties
BP
p,1
2, 6 in Remark 2.1 (we may use the homogeneous version of the prop-
erty 2 repetitively if necessary). Therefore Gronwall’s inequality implies
| X (-, )| . a,, is finite for each t € [0, T].
BP
p,1
In all, by the same argument in above, using the property 2 (repeti-

tively if necessary) and property 6 in Remark 2.1 to the right side of the
following estimate:

H(Vp)(X(, t), t)

| a
B» !
p,1

< [A-1(VD) Olle + D 1A {D(VD)(X (), )H(VX) ()] |,

=0
we can get the estimate (3.3). O
Lemma 3.1 implies two facts; one is that ||(Vp)(X(-,t),t)|| a,, is
P
p,1

finite. Also, from (3.1) (or (3.2)), we know [|5(t) is finite.(Let us

H dyy
B;’, 1
keep in mind this fact for a reference at Step 3.) Therefore from the

estimate

< 5 i(4 +
13(8) = el g0 S 3P 1AGB0) s

p,1 j>e

i(d
SO VR(X (1), )
jzt
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we can observe that {ﬁ;g}geN also converges to v in L>([0, T); Bg,l )-

Step 3. Applying the properties 2 and 5 in Remark 2.1 to the Euler
equations (1.1), we have

Iol_a <N, Vol _s +[Vpl_s ;
Bp71 Bp,1 Bp,1 Bp71

d
Hence we obtain v € L>([0, T7; Bp 1). Sobolev imbedding theorem now

d
delivers that v € W1°([0, T]; B ) C C([0,T]; B ).

d

We recall that o € L°([0,T]; B ) from Step 2. We can also differ-
entiate both sides of the Euler equatlons (3.1)

20
gtg (fL‘,t) = _(VP)(X(xvt)’t) - [(v,V)Vp](X(az,t),t).

d da

Then we take B, ; [p]—norm on both sides to get

11 _a—a) SNVPN_2a + (v, VIVEII_2-1g,
BP BP P
p,1 P 1 p,1
where [a] represents the greatest integer less than equal to a. The first
term of the right hand side is less than equal to some constant times of
o] 4 |lv]l 4., and the second term is finite. Therefore we can see that
P p

p,1 p,1

d_[d]

5 g d_[d]
v e W([0,T];BE, ,

) CH[0,T]; By, ™).

Step 4. From the estimate

lwes) = we@®l_ass = [1Se(v(s) = vED_a1s

B/,
041

< 3 2E)A;(u(s) - v(t)) s

j=—1
S 22D Ju(s) — v(t)|

d
B/,

d
together with the fact that v € C([0,T]; Bp ) we can deduce that each

wy is continuous on [0, 7] with values in Bp ( ). Therefore this fact
together with the result of Step 1 1mphes that v is continuous with

respect to time on [0, 7] with values in B;;,l (Rd).
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Step 5. Finally, from the similar estimate
e (s) — @(t)IIBgH = [|Se((s) — 0(t))
p,1

|
=+
=

< 2 VG sy — Gt

2-(2)

together with the fact that o € C([0,T]; ol

), we can deduce that

. 441
each wy is continuous on [0, T] with values in B} | (R%). Therefore the
. 441
limit ¥ is continuous on [0, 7] with values in B}, (R%).
The proof is now completed. U
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