A POINT STAR-CONFIGURATION IN \mathbb{P}^{n} HAVING GENERIC HILBERT FUNCTION

Yong-Su Shin*

Abstract

We find a necessary and sufficient condition for which a point star-configuration in \mathbb{P}^{n} has generic Hilbert function. More precisely, a point star-configuration in \mathbb{P}^{n} defined by general forms of degrees d_{1}, \ldots, d_{s} with $3 \leq n \leq s$ has generic Hilbert function if and only if $d_{1}=\cdots=d_{s-1}=1$ and $d_{s}=1,2$. Otherwise, the Hilbert function of a point star-configuration in \mathbb{P}^{n} is NEVER generic.

1. Introduction

Throughout the paper, $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is an $(n+1)$-variable polynomial ring over an infinite field \mathbb{k} of any characteristic, and the symbol \mathbb{P}^{n} will denote the projective n-space over a field \mathbb{k}. Let F_{1}, \ldots, F_{s} be general forms in R of degrees $d_{1} \leq \cdots \leq d_{s}$ with $2 \leq n \leq s$. The variety \mathbb{X} in \mathbb{P}^{n} of the ideal

$$
\bigcap_{1 \leq i_{1}<\cdots<i_{r} \leq s}\left(F_{i_{1}}, \ldots, F_{i_{r}}\right)
$$

is called a star-configuration in \mathbb{P}^{n} of type (r, s). If the F_{i} are all general linear forms in R, the star-configuration \mathbb{X} is called a linear starconfiguration in \mathbb{P}^{n}. In particular, if $r=n$, then the variety \mathbb{X} is called a point star-configuration in \mathbb{P}^{n}, which we shall discuss in this paper.

Let I be a homogeneous ideal of R. Then the numerical function

$$
\mathbf{H}_{R / I}(t):=\operatorname{dim}_{k} R_{t}-\operatorname{dim}_{k} I_{t}(t \geq 0)
$$

[^0]is called the Hilbert function of the ring R / I. If $I:=I_{\mathrm{X}}$ is the ideal of a subscheme \mathbb{X} in \mathbb{P}^{n}, then we denote
$$
\mathbf{H}_{\mathbb{X}}(t):=\mathbf{H}_{R / I_{\mathbb{X}}}(t) \quad \text { for } t \geq 0
$$
and call it the Hilbert function of \mathbb{X}.
Many interesting problems in the study of Hilbert functions and minimal free resolutions of star-configurations in \mathbb{P}^{n} have been extensively studied (see $[1,2,3,4,5,6]$). In this paper, we study point starconfigurations in \mathbb{P}^{n} defined by general forms for $n \geq 3$ (see [4]). Based on the degrees of these general forms, we find a necessary and sufficient condition for a point star-configuration in \mathbb{P}^{n} to have generic Hilbert function for $n \geq 3$ (see Theorem 2.8).

2. A star-configuration in \mathbb{P}^{n}

The authors [1] showed that a star-configuration \mathbb{X} in \mathbb{P}^{2} has generic Hilbert function if \mathbb{X} is defined by general forms F_{1}, \ldots, F_{s} of the same degree $d=1$, or 2 , and that \mathbb{X} has NEVER generic Hilbert function if \mathbb{X} is defined by general forms F_{1}, \ldots, F_{s} of the same degree $d \geq 3$. In [6], the author generalized the result as follows.

Theorem 2.1 ([6, Theorem 2.7]). Let \mathbb{X} be a star-configuration in \mathbb{P}^{2} defined by general forms F_{1}, \ldots, F_{s} of degrees d_{1}, \ldots, d_{s} with $3 \leq s$. Then \mathbb{X} has generic Hilbert function if and only if $d_{i} \leq 2$ for every $i=1, \ldots, s$.

The following is an immediate corollary of Theorem 3.4 in [4] (see also [2, 3]).

Corollary 2.2 ([4, Corollary 2.4]). Let \mathbb{X} be a linear star-configuration in \mathbb{P}^{n} of type (n, s) with $2 \leq n \leq s$. Then \mathbb{X} has generic Hilbert function i.e.,

$$
\mathbf{H}_{\mathbb{X}}(i)=\min \left\{\operatorname{deg}(\mathbb{X}),\binom{i+n}{n}\right\}
$$

for every $i \geq 0$.
The following examples are motivation to this study: under what conditions given point star configurations in \mathbb{P}^{n} to have generic Hilbert functions.

Example 2.3.
(a) Consider a point star-configuration \mathbb{X} in \mathbb{P}^{3} defined by 5 -general forms of degrees $1,1,1,1,2$. Then, by Theorem 3.4 in [4], \mathbb{X} has generic Hilbert function

$$
\mathbf{H}_{\mathbb{X}}: \begin{array}{llllll}
1 & 4 & 10 & 16 & \rightarrow .
\end{array}
$$

(b) However, if we consider a point star-configuration \mathbb{Y} in \mathbb{P}^{3} defined by 5 -forms of degrees $1,1,1,2,2$, then the Hilbert function of \mathbb{Y} is

$$
\mathbf{H}_{\mathbb{Y}}: \begin{array}{llllllll}
1 & 4 & 10 & 19 & 25 & \rightarrow,
\end{array}
$$

which is not generic.
As seen in Example 2.3 (a), there exists a non-linear point starconfiguration in \mathbb{P}^{3} having generic Hilbert function. This motivates the following proposition, which generalises Corollary 2.2.

Lemma 2.4. Let \mathbb{X} be a point star-configuration in \mathbb{P}^{n} defined by general forms of degrees $1 \leq d_{1} \leq \cdots \leq d_{s}$ with $2 \leq n \leq s$. If $d_{1}=\cdots=$ $d_{s-1}=1$ and $d_{s}=2$, then \mathbb{X} has generic Hilbert function.

Proof. By Theorem 2.1, if $n=2$, then \mathbb{X} has generic Hilbert function. We assume $n>2$. If $s=n$, then \mathbb{X} is a complete intersection of 2 -points in \mathbb{P}^{n}, and hence the result is immediate. Now suppose $n<s$.

Note that, by Theorem 3.4 in [4], the degrees of the minimal generators are $s-n+1$ or $s-n+2$. Hence the Hilbert function of \mathbb{X} up to degrees $\leq s-n$ is

$$
\mathbf{H}_{\mathbb{X}}: \begin{array}{llll}
1 & \binom{1+n}{n} & \cdots & \binom{(s-n)+n}{n}
\end{array} \cdots,
$$

and

$$
\operatorname{deg}(\mathbb{X})=\binom{s-1}{n}+2 \cdot\binom{s-1}{n-1}
$$

Recall that $\binom{\alpha}{\beta}=\binom{\alpha-1}{\beta}+\binom{\alpha-1}{\beta-1}$ for $1 \leq \beta \leq \alpha$. Since the ideal $I_{\mathbb{X}}$ has $\binom{s-1}{n-2}$-generators in degree $s-n+1$, we get that

$$
\begin{aligned}
& \mathbf{H}_{\mathbb{X}}(s-n+1)=\binom{(s-n+1)+n}{n}-\binom{s-1}{n-2}=\binom{s+1}{n}-\binom{s-1}{n-2} \\
= & \binom{s-1}{n}+2 \cdot\binom{s-1}{n-1}=\operatorname{deg}(\mathbb{X}),
\end{aligned}
$$

and thus \mathbb{X} has generic Hilbert function, as we wished.
Lemma 2.5. Let \mathbb{X} be a point star-configuration in \mathbb{P}^{n} defined by general forms of degrees $1 \leq d_{1} \leq \cdots \leq d_{s}$ with $3 \leq n \leq s$. If $d_{1}=\cdots=$ $d_{s-1}=1$ and $2<d_{s}$, then the Hilbert function of \mathbb{X} is NEVER generic.

Proof. If $s=n$, then \mathbb{X} is a complete intersection in \mathbb{P}^{n} and the first two values of the Hilbert function of \mathbb{X} are 1 and 2. Moreover, since $\operatorname{deg}(\mathbb{X})=d_{s}>2$, the Hilbert function of \mathbb{X} is not generic.

Now assume that $s>n$. Notice that $I_{\mathbb{X}}$ has $\binom{s-1}{n-2}$-generators in degree $s-n+1$, and $\operatorname{deg}(\mathbb{X})=\binom{s-1}{n}+d_{s} \cdot\binom{s-1}{n-1}$. Moreover, since

$$
\begin{aligned}
& \operatorname{deg}(\mathbb{X})-\mathbf{H}_{\mathbb{X}}(s-n+1) \\
= & \binom{s-1}{n}+d_{s} \cdot\binom{s-1}{n-1}-\left[\binom{(s-n+1)+n}{n}-\binom{s-1}{n-2}\right] \\
= & \binom{s-1}{n}+d_{s} \cdot\binom{s-1}{n-1}-\left[\binom{s+1}{n}-\binom{s-1}{n-2}\right] \\
= & \binom{s-1}{n}+d_{s} \cdot\binom{s-1}{n-1}-\left[\binom{s-1}{n}+2\binom{s-1}{n-1}+\binom{s-1}{n-2}-\binom{s-1}{n-2}\right] \\
= & \left(d_{s}-2\right) \cdot\binom{s-1}{n-1}>0,
\end{aligned}
$$

which means that \mathbb{X} does not have generic Hilbert function. This completes the proof.

To show that the condition in Lemma 2.4 is actually an equivalent relation for a point star-configuration \mathbb{X} in \mathbb{P}^{n} to have generic Hilbert function, we need one more notion $\sigma(\mathbb{X})$ which is defined to be

$$
\sigma(\mathbb{X})=\min \left\{d \mid \mathbf{H}_{\mathbb{X}}(d-1)=\mathbf{H}_{\mathbb{X}}(d)\right\}
$$

We will use the following proposition, which generalizes Proposition 3.6 in [6], in the proof of the main theorem (see Theorem 2.8).

Proposition 2.6. Let $\mathbb{X}:=\mathbb{X}^{(n, s)}$ be a point star-configuration in \mathbb{P}^{n} defined by general forms F_{1}, \ldots, F_{s} of degrees $1 \leq d_{1} \leq \cdots \leq d_{s}$ with $2 \leq n \leq s$. Then

$$
\sigma(\mathbb{X})=\left[\sum_{i=1}^{s} d_{i}\right]-(n-1)
$$

Proof. We shall prove this by double induction on n and s. If $n=2$, then by Proposition 3.6 in [6] it holds. Suppose $n>2$. If $s=n$, then \mathbb{X} is a complete intersection, and thus the statement is true. Now we assume that $n<s$. By Proposition 2.6 in [3], for $t \geq 0$,

$$
\mathbf{H}_{\mathbb{X}}(t)=\mathbf{H}_{\mathbb{X}(n-1, s-1)}(t)+\mathbf{H}_{\mathbb{X}(n, s-1)}\left(t-d_{s}\right)-\mathbf{H}_{\mathbb{X}(n-1, s-1)}\left(t-d_{s}\right)
$$

Define $d:=\sum_{i=1}^{s} d_{i}$, and $d^{\prime}:=\sum_{i=1}^{s-1} d_{i}=d-d_{s}$. By induction on s,

$$
\sigma\left(\mathbb{X}^{(n, s-1)}\right)=d^{\prime}-(n-1), \quad \text { i.e., }
$$

$$
\mathbf{H}_{\mathbb{X}^{(n, s-1)}}\left(d^{\prime}-(n+1)\right)<\mathbf{H}_{\mathbb{X}^{(n, s-1)}}\left(d^{\prime}-n\right)=\mathbf{H}_{\mathbb{X}^{(n, s-1)}}\left(d^{\prime}-(n-1)\right) .
$$

Since $\mathbb{X}^{(n-1, s-1)}$ is arithmetically Cohen-Macaulay and $\sigma\left(\mathbb{X}^{(n-1, s-1)}\right)=$ $d^{\prime}-(n-2)$ as a point star-configuration in \mathbb{P}^{n-1}, we get that

$$
\begin{aligned}
& \mathbf{H}_{\mathbb{X}}(d-(n-1))-\mathbf{H}_{\mathbb{X}}(d-n) \\
= & {\left[\mathbf{H}_{\mathbb{X}(n-1, s-1)}(d-(n-1))+\mathbf{H}_{\mathbb{X}(n, s-1)}\left(d^{\prime}-(n-1)\right)-\right.} \\
& \left.\mathbf{H}_{\mathbb{X}^{(n-1, s-1)}}\left(d^{\prime}-(n-1)\right)\right]- \\
& {\left[\mathbf{H}_{\mathbb{X}^{(n-1, s-1)}}(d-n)+\mathbf{H}_{\mathbb{X}(n, s-1)}\left(d^{\prime}-n\right)-\mathbf{H}_{\mathbb{X}}(n-1, s-1)\right.} \\
= & {\left[\mathbf{H}_{\mathbb{X}}\left(d^{\prime}-n\right)\right] } \\
& {\left[\mathbf{H}_{\mathbb{X}(n, s-1)}\left(d^{\prime}-(n-1)\right)-\mathbf{H}_{\mathbb{X}(n, s-1)}\left(d^{\prime}-n\right)\right]-} \\
& {\left[\mathbf{H}_{\mathbb{X}(n-1, s-1)}\left(d^{\prime}-(n-1)\right)-\mathbf{H}_{\mathbb{X}(n-1, s-1)}\left(d^{\prime}-n\right)\right] } \\
= & {\left[\mathbf{H}_{\mathbb{X}(n-1, s-1)}(d-(n-1))-\mathbf{H}_{\mathbb{X}(n-1, s-1)}(d-n)\right]-} \\
& {\left[\mathbf{H}_{\mathbb{X}(n-1, s-1)}\left(d^{\prime}-(n-1)\right)-\mathbf{H}_{\mathbb{X}(n-1, s-1)}\left(d^{\prime}-n\right)\right] } \\
& \left.\left(\operatorname{since} \sigma \mathbb{X}^{(n, s-1)}\right)=d^{\prime}-(n-1) \text { by induction on } s\right) \\
= & \Delta \mathbf{H}_{\mathbb{X}^{(n-1, s-1)}}(d-(n-1))-\Delta \mathbf{H}_{\mathbb{X}^{(n-1, s-1)}}\left(d^{\prime}-(n-1)\right) \\
= & 0 .
\end{aligned}
$$

By the same argument as above, we have that

$$
\begin{aligned}
& \mathbf{H}_{\mathbb{X}}(d-n)-\mathbf{H}_{\mathbb{X}}(d-(n+1)) \\
= & \Delta \mathbf{H}_{\mathbb{X}(n-1, s-1)}(d-n)-\Delta \mathbf{H}_{\mathbb{X}(n-1, s-1)}\left(d^{\prime}-n\right)>0 .
\end{aligned}
$$

This implies that

$$
\mathbf{H}_{\mathbb{X}}(d-(n+1))<\mathbf{H}_{\mathbb{X}}(d-n)=\mathbf{H}_{\mathbb{X}}(d-(n-1)),
$$

and thus

$$
\sigma(\mathbb{X})=d-(n-1)=\left[\sum_{i=1}^{s} d_{i}\right]-(n-1)
$$

as we wished.
Proposition 2.7. Let \mathbb{X} be a point star-configuration in \mathbb{P}^{n} defined by general forms of degrees $1 \leq d_{1} \leq \cdots \leq d_{s}$ for $3 \leq n \leq s$. If $d_{1}=\cdots=d_{\ell-1}=1$ and $2 \leq d_{\ell} \leq \cdots \leq d_{s}$ with $1 \leq \ell \leq s-1$, then the Hilbert function of \mathbb{X} is $N E V E R$ generic.

Proof. By Proposition 2.6 in [3],

$$
\begin{aligned}
& \operatorname{deg}(\mathbb{X})-\mathbf{H}_{\mathbb{X}}(d-(n+1)) \\
&=\quad \operatorname{deg}(\mathbb{X})-\left[\mathbf{H}_{\mathbb{X}(n-1, s-1)}(d-(n+1))-\mathbf{H}_{\mathbb{X}(n-1, s-1)}\left(d^{\prime}-(n+1)\right)\right. \\
&\left.\quad+\mathbf{H}_{\mathbb{X}(n, s-1)}\left(d^{\prime}-(n+1)\right)\right] \\
&=\quad \operatorname{deg}(\mathbb{X})-\left[\left(d_{s}-1\right) \cdot \operatorname{deg}\left(\mathbb{X}^{(n-1, s-1)}\right)+\Delta \mathbf{H}_{\mathbb{X}(n-1, s-1)}\left(d^{\prime}-n\right)\right. \\
&\left.+\mathbf{H}_{\mathbb{X}(n, s-1)}\left(d^{\prime}-(n+1)\right)\right]
\end{aligned}
$$

```
\(>\operatorname{deg}(\mathbb{X})-\left[d_{s} \cdot \operatorname{deg}\left(\mathbb{X}^{(n-1, s-1)}\right)+\mathbf{H}_{\mathbb{X}(n, s-1)}\left(d^{\prime}-(n+1)\right)\right]\)
    (by Proposition \(2.6, \sigma\left(\mathbb{X}^{(n-1, s-1)}\right)=d^{\prime}-(n-2)\) in \(\mathbb{P}^{n-1}\) )
\(>\quad\left[\operatorname{deg}(\mathbb{X})-d_{s} \cdot \operatorname{deg}\left(\mathbb{X}^{(n-1, s-1)}\right)\right]-\mathbf{H}_{\mathbb{X}(n, s-1)}\left(d^{\prime}-(n+1)\right)\)
\(=\operatorname{deg}\left(\mathbb{X}^{(n, s-1)}\right)-\mathbf{H}_{\mathbb{X}^{(n, s-1)}}\left(d^{\prime}-(n+1)\right) \quad\) (by Proposition 2.6 in [3])
\(>0 \quad\) (by Proposition 2.6, \(\sigma\left(\mathbb{X}^{(n, s-1)}\right)=d^{\prime}-(n-1)\) ).
```

Notice that, by Theorem 3.4 in [4], $I_{\mathbb{X}}$ has at least one generator in degree $d-\left(d_{s-n+2}+\cdots+d_{n}\right)=d_{1}+\cdots+d_{s-n+1}$. Moreover,

$$
\begin{aligned}
& {[d-(n+1)]-\left[d_{1}+\cdots+d_{s-n+1}\right] } \\
= & \left(d_{s-n+2}+\cdots+d_{s-1}+d_{s}\right)-(n+1) \\
= & \left(d_{s-n+2}+\cdots+\left(d_{s-1}-1\right)+\left(d_{s}-1\right)\right)-(n-1) \\
\geq & 0 \quad\left(\text { since } 2 \leq d_{s-1} \leq d_{s}\right)
\end{aligned}
$$

i.e., $d_{1}+\cdots+d_{s-n+1} \leq d-(n+1)$, which implies that

$$
\mathbf{H}_{\mathbb{X}}(d-(n+1))<\binom{d-(n+1)+n}{n}=\binom{d-1}{n} .
$$

Therefore, $\mathbf{H}_{\mathbb{X}}(d-(n+1))<\min \left\{\operatorname{deg}(\mathbb{X}),\binom{d-1}{n}\right\}$, and thus the Hilbert function of \mathbb{X} is not generic. This completes the proof.

It is from Corollary 2.2, Lemmas 2.4, 2.5, and Proposition 2.7 that the following main theorem is immediate.

THEOREM 2.8. Let $\mathbb{X}:=\mathbb{X}^{(n, s)}$ be a point star-configuration in \mathbb{P}^{n} defined by general forms of degrees $1 \leq d_{1} \leq \cdots \leq d_{s}$ with $3 \leq n \leq s$. Then \mathbb{X} has generic Hilbert function if and only if $d_{1}=\cdots=d_{s-1}=1$ and $d_{s}=1,2$.

References

[1] J. Ahn and Y. S. Shin, The Minimal Free Resolution of A Star-Configuration in \mathbb{P}^{n} and The Weak Lefschetz Property, J. Korean Math. Soc. 49 (2012), no. 2, 405-417.
[2] E. Carlini, E. Guardo, and A. V. Tuyl, Star configurations on generic hypersurfaces, J. Algebra 407 (2014), 1-20.
[3] A. V. Geramita, B. Harbourne, and J. C. Migliore, Star Configurations in \mathbb{P}^{n}, J. Algebra 376 (2013), 279-299.
[4] J. P. Park and Y. S. Shin, The Minimal Free Graded Resolution of A Starconfiguration in \mathbb{P}^{n}, J. Pure Appl. Algebra 219 (2015), 2124-2133.
[5] Y. S. Shin, Secants to The Variety of Completely Reducible Forms and The Union of Star-Configurations, Journal of Algebra and its Applications 11 (2012), no. 6, 1250109 (27 pages).
[6] Y. S. Shin, Star-Configurations in \mathbb{P}^{2} Having Generic Hilbert Functions and The weak-Lefschetz Property, Comm. in Algebra 40 (2012), 2226-2242.

Department of Mathematics
Sungshin Women's University
Seoul 136-742,Republic of Korea
E-mail: ysshin@sungshin.ac.kr

[^0]: Received October 31, 2014; Accepted January 27, 2015.
 2010 Mathematics Subject Classification: Primary 13P40; Secondary 14M10.
 Key words and phrases: Hilbert functions, star-configurations, point starconfigurations.

 This research was supported by a grant from Sungshin Women's University in 2014.

