ARITHMETIC OF A CERTAIN MODULAR CURVE

DaEyeol Jeon*

Abstract. In this work, we study some arithmetic properties of an intermediate modular curve $X_{\Delta}(21)$.

1. Introduction

Let N be a positive integer and Δ a subgroup of $(\mathbb{Z} / N \mathbb{Z})^{*}$ which contains ± 1. Let $X_{\Delta}(N)$ be the modular curve defined over \mathbb{Q} associated to the congruence subgroup

$$
\Gamma_{\Delta}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(1):=\mathrm{SL}_{2}(\mathbb{Z})|a(\bmod N) \in \Delta, N| c\right\}
$$

Then all the intermediate modular curves between $X_{1}(N)$ and $X_{0}(N)$ are of the form $X_{\Delta}(N)$.

There is a very interesting modular curve $X_{\Delta}(21)$ where $\Delta=\{ \pm 1, \pm 8\}$ which is the only hyperelliptic intermediate modular curve with $\{ \pm 1\} \subsetneq$ $\Delta \subsetneq(\mathbb{Z} / N \mathbb{Z})^{*}$.

A smooth, projective curve X with the genus $g(X) \geq 2$ is called hyperelliptic if it admits a surjective morphism $\phi: X \rightarrow \mathbb{P}^{1}$ of degree 2. If X is a hyperelliptic curve, there exists a unique involution ν, called a hyperelliptic involution, such that $X /\langle\nu\rangle$ is a rational curve. A hyperelliptic involution is contained in the center of the automorphism group $\operatorname{Aut}(X)$, and it is defined over \mathbb{Q}.

In fact, Ishii and Momose [2] asserted that there exist no hyperelliptic modular curves $X_{\Delta}(N)$ with $\{ \pm 1\} \nsubseteq \Delta \varsubsetneqq(\mathbb{Z} / N \mathbb{Z})^{*}$. But the author and Kim [4] proved that $X_{\Delta}(21)$ is hyperelliptic, and it is the unique one.

[^0]In this paper, we study some arithmetic properties of $X_{\Delta}(21)$. Firstly we give a new proof for that $X_{\Delta}(21)$ is hyperelliptic by using the computations in [5]. Secondly we compute the full automorphism group Aut $\left(X_{\Delta}(21)\right)$ of $X_{\Delta}(21)$. Finally we find the explicit expressions of all the automorphisms of $X_{\Delta}(21)$.

2. Preliminaries

Let \mathbb{H} be the complex upper half plane and $\mathbb{H}^{*}=\mathbb{H} \cup \mathbb{P}^{1}(\mathbb{Q})$, and let

$$
\Gamma_{1}(N):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(1) \right\rvert\, a \equiv d \equiv 1(\bmod N), c \equiv 0(\bmod N)\right\}
$$

Then $\Gamma_{1}(N)$ acts on \mathbb{H}^{*} by the linear fractional transformation, and then the compact Riemann surface $X_{1}(N)=\Gamma_{1}(N) \backslash \mathbb{H}^{*}$ is called a modular curve.

The points of $\Gamma_{1}(N) \backslash \mathbb{H}$ are in one-to-one correspondence with the equivalent classes of elliptic curves E together with a specified point P of exact order N. Let $L_{\tau}=[\tau, 1]$ be the lattice in \mathbb{C} with basis τ and 1. Then $[\tau] \in \Gamma_{1}(N) \backslash \mathbb{H}$ corresponds to $\left[\mathbb{C} / L_{\tau}, \frac{1}{N}+L_{\tau}\right]$. Thus $\Gamma_{1}(N) \backslash \mathbb{H}$ is a moduli space for the moduli problem of determining equivalence classes of pairs (E, P), where E is an elliptic curve defined over \mathbb{C}, and $P \in E$ is a point of exact order N. Two pairs (E, P) and $\left(E^{\prime}, P^{\prime}\right)$ are equivalent if there is an isomorphism $E \simeq E^{\prime}$ which sends P to P^{\prime}.

Now we note that

$$
\begin{aligned}
{\left[\mathbb{C} / L_{\tau}, \frac{1}{N}+L_{\tau}\right] } & =\left[y^{2}=4 x^{3}-g_{2}(\tau) x-g_{3}(\tau),\left(\wp\left(\frac{1}{N}, \tau\right), \wp^{\prime}\left(\frac{1}{N}, \tau\right)\right)\right] \\
& =\left[y^{2}+(1-c(\tau)) x y-b(\tau) y=x^{3}-b(\tau) x^{2},(0,0)\right],
\end{aligned}
$$

where $\wp(z, \tau):=\wp\left(z, L_{\tau}\right)$ is the Weierstrass elliptic function. From [1], it follows that

$$
\begin{equation*}
b(\tau)=-\frac{\left(\wp\left(\frac{1}{N}, \tau\right)-\wp\left(\frac{2}{N}, \tau\right)\right)^{3}}{\wp^{\prime}\left(\frac{1}{N}, \tau\right)^{2}}, c(\tau)=-\frac{\wp^{\prime}\left(\frac{2}{N}, \tau\right)}{\wp^{\prime}\left(\frac{1}{N}, \tau\right)} \tag{2.1}
\end{equation*}
$$

are modular functions on $\Gamma_{1}(N)$ and generate the function field of $X_{1}(N)$, where the derivative is with respect to z. Furthermore, the function field of $X_{1}(N)$ can be generated by x, y satisfying the defining equation $f_{N}(x, y)=0$ of $X_{1}(N)$ for $N \leq 30$ in Table 6 of [6], where x, y are considered as functions of τ via the rational maps of Table 7 of [6], Eq. (2.1) and the following relations:

$$
\begin{equation*}
b=c r, c=s(r-1) \tag{2.2}
\end{equation*}
$$

3. Hyperelliptic modular curves

We consider the automorphisms on $X_{\Delta}(N)$. Note that $X_{\Delta}(N) \rightarrow$ $X_{0}(N)$ is a Galois covering with Galois group $\Gamma_{0}(N) / \Gamma_{\Delta}(N)$ which gives automorphisms on $X_{\Delta}(N)$. For an integer a prime to N, let $[a]$ denote the automorphism of $X_{\Delta}(N)$ represented by $\gamma \in \Gamma_{0}(N)$ such that $\gamma \equiv$ $\left(\begin{array}{ll}a & * \\ 0 & *\end{array}\right) \bmod N$. Sometimes we regard $[a]$ as a matrix.

For each divisor $d \mid N$ with $(d, N / d)=1$, consider the matrices of the form $\left(\begin{array}{cc}d x & y \\ N z & d w\end{array}\right)$ with $x, y, z, w \in \mathbb{Z}$ and determinant d. Then these matrices define a unique involution on $X_{0}(N)$ which is called the AtkinLehner involution and denoted by W_{d}. We denote by W_{d} a matrix of the above form. In general, W_{d} may not define an automorphism of $X_{\Delta}(N)$.

Note that $X_{\Delta}(21)$ is isomorphic to the quotient space $X_{1}(21) /\langle[8]\rangle$. Take $[8]=\left(\begin{array}{cc}8 & -3 \\ 21 & -8\end{array}\right)$ then one can compute that

$$
\begin{align*}
& b([8] \tau)=-\frac{\left(\wp\left(\frac{8}{21}, \tau\right)-\wp\left(\frac{16}{21}, \tau\right)\right)^{3}}{\wp^{\prime}\left(\frac{8}{21}, \tau\right)^{2}} \tag{3.1}\\
& c([8] \tau)=-\frac{\wp^{\prime}\left(\frac{16}{21}, \tau\right)}{\wp^{\prime}\left(\frac{8}{21}, \tau\right)}
\end{align*}
$$

From the q-expansions of $\wp(z, \tau)$ and $\wp^{\prime}(z, \tau)$, the author with Kim and Lee [5] compute the q-expansions $x(\tau)$ and $y(\tau)$ by using Eq. (2.1), (2.2) and Table 7 of [6] where $q=e^{2 \pi i \tau}$. Also they compute the q expansions of $x([8] \tau)$ and $y([8] \tau)$ from Eq. (3.1). Then the functions $u:=x+x \circ[8]$ and $v:=y+y \circ[8]$ are generators for the function field of $X_{1}(21) /\langle[8]\rangle$. By using the q-expansions of $x, y, x \circ[8], y \circ[8]$, they compute a defining equation of $X_{1}(21) /\langle[8]\rangle$ as follows:

$$
\begin{align*}
f(u, v):= & -2+4 v-u+u^{4} v^{2}+u^{5} v+u^{5} v^{2}+3 u^{2} v^{2}-3 u^{2} v+5 u v^{2}-3 u^{3} v \tag{3.2}\\
& +2 u^{4} v-5 u^{3} v^{2}+3 u^{2} v^{3}-u^{2}-6 v^{2}+u^{3}-4 v^{3}+u^{4}+v^{4}=0
\end{align*}
$$

Thus this equation is also a defining equation of $X_{\Delta}(21)$.
Firstly, we give a new proof for the hyperellipticity of $X_{\Delta}(21)$ by using a computer algebra system Maple. Maple can compute the Weierstrass form of hyperelliptic curves by using the following commands:

```
> with(algcurves):
> Weierstrassform(f(u,v) ,u,v,x,y);
```

Let α be a root of the polynomial $g(x):=x^{4}-4 x^{3}-6 x^{2}+4 x-2$. Then we have a defining equation $y^{2}=c h(x)$ for $X_{\Delta}(21)$ where

$$
\begin{aligned}
c= & 351440727601040 \alpha^{3}+355787816740356 \alpha^{2}-269886886283168 \alpha \\
& +141066103901184
\end{aligned}
$$

and

$$
\begin{aligned}
h(x) & =x^{8}+a_{7} x^{7}+a_{6} x^{6}+a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \\
a_{7} & =-\frac{1}{58619}\left(14280 \alpha^{3}-86540 \alpha^{2}+3616 \alpha+24712\right) \\
a_{6} & =-\frac{1}{58619}\left(202860 \alpha^{3}-856974 \alpha^{2}-1052048 \alpha+433812\right) \\
a_{5} & =-\frac{1}{5329}\left(32712 \alpha^{3}-125696 \alpha^{2}-209104 \alpha+19136\right) \\
a_{4} & =-\frac{1}{58619}\left(200536 \alpha^{3}-672780 \alpha^{2}-1522508 \alpha-624892\right) \\
a_{3} & =\frac{1}{5329}\left(3456 \alpha^{3}-19332 \alpha^{2}-13240 \alpha+70896\right) \\
a_{2} & =\frac{1}{58619}\left(72172 \alpha^{3}-275150 \alpha^{2}-502432 \alpha+284760\right) \\
a_{1} & =\frac{1}{58619}\left(18272 \alpha^{3}-54248 \alpha^{2}-139080 \alpha+2984\right) \\
a_{0} & =-\frac{1}{58619}\left(120 \alpha^{3}-4668 \alpha^{2}-1940 \alpha+9567\right)
\end{aligned}
$$

Therefore one can conclude that $X_{\Delta}(21)$ is a hyperelliptic curve of genus 3 .

Now we compute $\operatorname{Aut}\left(X_{\Delta}(21)\right)$ by using the computer algebra system MAGMA. MAGMA can compute the full automorphism group of hyperelliptic curves of genus 2 or 3 . One can use the following commands:

```
> R<x> := PolynomialRing(Integers());
> K<y> := NumberField(g(x));
>P<x> := PolynomialRing(K);
>k := c*h(x);
> C := HyperellipticCurve(k);
> GeometricAutomorphismGroup(C);
```

Then one can get the order of $\operatorname{Aut}\left(X_{\Delta}(21)\right)$ to be 12. In fact, the author, Im and $\operatorname{Kim}[3]$ prove that the quotient group $\mathfrak{N}_{\Delta}(21) / \Gamma_{\Delta}(21)$ is isomorphic to the dihedral group of order 12 where $\mathfrak{N}_{\Delta}(21)$ is the normalizer of $\Gamma_{\Delta}(21)$ in $\mathrm{PSL}_{2}(\mathbb{R})$. Since $\mathfrak{N}_{\Delta}(21) / \Gamma_{\Delta}(21)$ can be consider a subgroup of $\operatorname{Aut}\left(X_{\Delta}(21)\right)$, one can conclude that $\operatorname{Aut}\left(X_{\Delta}(21)\right)$ is the dihedral group of order 12.

Now we find the explicit expressions on Eq. (3.2) of all the automorphsims of $X_{\Delta}(21)$. For that it suffices to find explicit expressions of the generators of $\operatorname{Aut}\left(X_{\Delta}(21)\right)$ which are $[2] W_{3}$ and W_{21}. Note that W_{3} is the hyperelliptic involution on $X_{\Delta}(21)$ whose expression can be obtained from the computations in [5] as follows:

$$
\begin{align*}
& u \circ W_{3}=\frac{-1+5 v+3 u^{2}-9 u v+6 v^{2}-3 u v^{2}+v^{3}+2 u^{3} v+3 u^{2} v}{-2+v-3 u v-v^{3}+u^{3} v}, \tag{3.3}\\
& v \circ W_{3}=-\frac{-1+3 u-4 v-3 u v+3 v^{2}+3 u^{2} v+v^{3}+2 u^{3} v}{1-2 v+6 v^{2}-v^{3}+u^{3} v-3 u^{2} v^{2}} .
\end{align*}
$$

Now consider the automorphism [2] whose action on u and v are $u \circ[2]=x \circ[2]+x \circ[16]$ and $v \circ[2]=y \circ[2]+y \circ[16]$. By using the q-expansions of $u, v, u \circ[2]$ and $v \circ[2]$, one can find the following expressions:

$$
\begin{align*}
& u \circ[2]=\frac{-1+2 v^{2}-v^{3}-2 u v-u^{2} v^{2}+u^{3} v}{-1+v-2 v^{2}-u v+u^{2} v^{2}}, \tag{3.4}\\
& v \circ[2]=-\frac{4 v+2 v^{2}-v^{3}-u-u v+u v^{2}+u v^{3}+u^{2}-2 u^{2} v-2 u^{2} v^{2}+u^{3}+u^{3} v}{-1+v-2 v^{2}+u-3 u v+u v^{2}+u v^{3}+u^{2}+u^{2} v+u^{2} v^{2}+u^{3} v} .
\end{align*}
$$

By the exact same method, one can get the expression of the action by W_{21} as follows:

$$
\begin{aligned}
u \circ & W_{21} \\
= & \left\{2+3 \zeta-3 \zeta^{6}+3 \zeta^{8}+\left(4-3 \zeta+3 \zeta^{6}-3 \zeta^{8}\right) u+\left(3 \zeta^{3}-3 \zeta^{4}-3 \zeta^{11}\right) u^{2}-\left(1+3 \zeta-3 \zeta^{6}+3 \zeta^{8}\right) u^{3}\right. \\
& -\left(7+3 \zeta-6 \zeta^{3}+6 \zeta^{4}-3 \zeta^{6}+3 \zeta^{8}+6 \zeta^{11}\right) v+\left(2+3 \zeta-6 \zeta^{3}+6 \zeta^{4}-3 \zeta^{6}+3 \zeta^{8}+6 \zeta^{11}\right) u v \\
& +\left(5+3 \zeta^{3}-3 \zeta^{4}-3 \zeta^{11}\right) u^{2} v-\left(1+3 \zeta-3 \zeta^{6}+3 \zeta^{8}\right) u^{3} v-\left(4+3 \zeta-3 \zeta^{6}+3 \zeta^{8}\right) v^{2} \\
& \left.-\left(3 \zeta^{3}-3 \zeta^{4}-3 \zeta^{11}\right) u v^{2}+\left(4-3 \zeta^{4}-3 \zeta^{11}+3 \zeta^{3}\right) u^{2} v^{2}+\left(4-3 \zeta+3 \zeta^{3}-3 \zeta^{4}+3 \zeta^{6}-3 \zeta^{8}-3 \zeta^{11}\right) v^{3}\right\} \\
& /\left(-5+2 u-3 u^{2}+u^{3}-2 v+u v-2 u^{2} v-8 v^{2}+3 u v^{2}-v^{3}\right), \\
v \circ & W_{21} \\
= & \left\{-76-76 \zeta^{3}+76 \zeta^{4}-26 \zeta^{6}+26 \zeta^{8}+76 \zeta^{11}+26 \zeta+\left(-285-224 \zeta^{3}+224 \zeta^{4}-103 \zeta^{6}+103 \zeta^{8}+224 \zeta^{11}\right.\right. \\
& +103 \zeta) u+\left(30+23 \zeta^{3}-23 \zeta^{4}+10 \zeta^{6}-10 \zeta^{8}-23 \zeta^{11}-10 \zeta\right) u^{2}+\left(-42-23 \zeta^{3}+23 \zeta^{4}-16 \zeta^{6}+16 \zeta^{8}\right. \\
& \left.+23 \zeta^{11}+16 \zeta\right) u^{3}+\left(102+79 \zeta^{3}-79 \zeta^{4}+38 \zeta^{6}-38 \zeta^{8}-79 \zeta^{11}-38 \zeta\right) u^{4}+\left(314+277 \zeta^{3}-277 \zeta^{4}\right. \\
& \left.+107 \zeta^{6}-107 \zeta^{8}-277 \zeta^{11}-107 \zeta\right) v+\left(225+163 \zeta^{3}-163 \zeta^{4}+86 \zeta^{6}-86 \zeta^{8}-163 \zeta^{11}-86 \zeta\right) u v \\
& +\left(-171-146 \zeta^{3}+146 \zeta^{4}-61 \zeta^{6}+61 \zeta^{8}+146 \zeta^{11}+61 \zeta\right) u^{2} v+\left(-241-182 \zeta^{3}+182 \zeta^{4}-88 \zeta^{6}+88 \zeta^{8}\right. \\
& \left.+182 \zeta^{11}+88 \zeta\right) u^{3} v+\left(-522-418 \zeta^{3}+418 \zeta^{4}-185 \zeta^{6}+185 \zeta^{8}+418 \zeta^{11}+185 \zeta\right) v^{2}+\left(-72-55 \zeta^{3}\right. \\
& \left.+55 \zeta^{4}-26 \zeta^{6}+26 \zeta^{8}+55 \zeta^{11}+26 \zeta\right) u v^{2}+\left(261-93 \zeta+93 \zeta^{6}+207 \zeta^{3}-93 \zeta^{8}-207 \zeta^{11}-207 \zeta^{4}\right) u^{2} v^{2} \\
& \left.+\left(25-9 \zeta+9 \zeta^{6}+21 \zeta^{3}-9 \zeta^{8}-21 \zeta^{11}-21 \zeta^{4}\right) v^{3}\right\} /\left\{44+32 \zeta^{3}-32 \zeta^{4}+16 \zeta^{6}-16 \zeta^{8}-32 \zeta^{11}-16 \zeta\right. \\
& +\left(63+43 \zeta^{3}-43 \zeta^{4}+23 \zeta^{6}-23 \zeta^{8}-43 \zeta^{11}-23 \zeta\right) u+\left(237+191 \zeta^{3}-191 \zeta^{4}+85 \zeta^{6}-85 \zeta^{8}-191 \zeta^{11}\right. \\
& -85 \zeta) u^{2}+\left(-105-86 \zeta^{3}+86 \zeta^{4}-37 \zeta^{6}+37 \zeta^{8}+86 \zeta^{11}+37 \zeta\right) u^{3}+\left(-66-47 \zeta^{3}+47 \zeta^{4}-25 \zeta^{6}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+25 \zeta^{8}+47 \zeta^{11}+25 \zeta\right) u^{4}+\left(119+88 \zeta^{3}-88 \zeta^{4}+47 \zeta^{6}-47 \zeta^{8}-88 \zeta^{11}-47 \zeta\right) v+\left(-759-602 \zeta^{3}\right. \\
& \left.+602 \zeta^{4}-274 \zeta^{6}+274 \zeta^{8}+602 \zeta^{11}+274 \zeta\right) u v+\left(333+262 \zeta^{3}-262 \zeta^{4}+119 \zeta^{6}-119 \zeta^{8}-262 \zeta^{11}\right. \\
& -119 \zeta) u^{2} v+\left(164+130 \zeta^{3}-130 \zeta^{4}+59 \zeta^{6}-59 \zeta^{8}-130 \zeta^{11}-59 \zeta\right) u^{3} v+\left(369+302 \zeta^{3}-302 \zeta^{4}\right. \\
& \left.\left.+130 \zeta^{6}-130 \zeta^{8}-302 \zeta^{11}-130 \zeta\right) v^{2}+\left(-165-133 \zeta^{3}+133 \zeta^{4}-59 \zeta^{6}+59 \zeta^{8}+133 \zeta^{11}+59 \zeta\right) u v^{2}+v^{3}\right\},
\end{aligned}
$$

$$
\text { where } \zeta \text { is a primitive } 21 \text {-th root of unity. }
$$

References

[1] H. Baaziz, Equations for the modular curve $X_{1}(N)$ and models of elliptic curves with torsion points, Math. Comp. 79 (2010), no. 272, 2371-2386.
[2] N. Ishii and F. Momose, Hyperelliptic modular curves, Tsukuba J. Math. 15 (1991), 413-423.
[3] B. Im, D. Jeon, and C. H. Kim, Normalizers of intermediate congruence subgroups of the Hecke subgroups, preprint.
[4] D. Jeon and C. H. Kim, On the arithmetic of certain modular curves. Acta Arith. 130 (2007), 138-193.
[5] D. Jeon, C. H. Kim, and Y. Lee, Families of elliptic curves with prescribed torsion subgroups over dihedral quartic fields, J. Number Theory. 147 (2015), 342-363.
[6] A. V. Sutherland, Constructing elliptic curves over finite fields with prescribed torsion, Math. Comp. 81 (2012), 1131-1147.

*

Department of Mathematics Education
Kongju National University
Kongju, Republic of Korea
E-mail: dyjeon@kongju.ac.kr

[^0]: Received October 02, 2014; Accepted January 12, 2015.
 2010 Mathematics Subject Classification: Primary 11G18, 11G30.
 Key words and phrases: hyperelliptic, modular curve.
 The author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0023942).

