A DETERMINANT FORMULA FOR THE RELATIVE CONGRUENT ZETA FUNCTION IN CYCLOTOMIC FUNCTION FIELDS

Jaehyun Ahn* and Dong-Seok Ka**

Abstract

In this paper we give a determinant formula for the relative congruent zeta function in cyclotomic function fields.

1. Introduction

Let $\mathrm{k}=\mathbb{F}_{q}(T)$ be the rational function field over the finite field \mathbb{F}_{q} and $\mathbb{A}=\mathbb{F}_{q}[T]$. Let $\infty=(1 / T)$ be the prime of k associated to $1 / T$, which is called the infinite prime of k . Write $\mathbb{A}^{+}=\{1 \neq M \in \mathbb{A}: M$ is monic $\}$ and $\mathbb{A}_{\mathrm{irr}}^{+}=\left\{P \in \mathbb{A}^{+}: P\right.$ is irreducible $\}$ for simplicity. For any $M \in \mathbb{A}^{+}$, write K_{M} for the M th cyclotomic function field and K_{M}^{+}for the maximal real subfield of K_{M}.

It is known that there exists a polynomial $P_{K_{M}}(X) \in \mathbb{Z}[X]$ such that

$$
\zeta\left(s, K_{M}\right)=\frac{P_{K_{M}}\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)},
$$

where $\zeta\left(s, K_{M}\right)$ is the congruence zeta function of K_{M}, and $P_{K_{M}}(1)$ is equal to the divisor class number $h_{K_{M}}$ of K_{M}. Let $\zeta^{(-)}\left(s, K_{M}\right)=$ $\zeta\left(s, K_{M}\right) / \zeta\left(s, K_{M}^{+}\right)$, called the relative congruence zeta function of K_{M} and $P_{K_{M}}^{(-)}(X)=P_{K_{M}}(X) / P_{K_{M}^{+}}(X)$, where $P_{K_{M}^{+}}(X)$ is the polynomial corresponding to the congruence zeta function $\zeta\left(s, K_{M}^{+}\right)$for K_{M}^{+}. Then we have $\zeta^{(-)}\left(s, K_{M}\right)=P_{K_{M}}^{(-)}\left(q^{-s}\right)$ and $P_{K_{M}}^{(-)}(1)=h_{K_{M}}^{-}$, where $h_{K_{M}}^{-}=$ $h_{K_{M}} / h_{K_{M}^{+}}$is the relative divisor class number of K_{M}.

Received August 05, 2014; Accepted September 26, 2014.
2010 Mathematics Subject Classification: Primary 11R58, 11R60, 11R38.
Key words and phrases: Congruence zeta function, cyclotomic function fields.
Correspondence should be addressed to Jaehyun Ahn, jhahn@cnu.ac.kr.
This study was financially supported by research fund of Chungnam National University in 2011.

In recent paper [5], Shiomi has expressed the polynomial $P_{K_{M}}^{(-)}(X)$ as determinant of matrix $D_{M}^{(-)}(X)$ up to some polynomial $J_{K_{M}}^{(-)}(X)$. Since $h_{K_{M}}^{-}=P_{K_{M}}^{(-)}(1)$, this determinant formula for $P_{K_{M}}^{(-)}(X)$ can be regarded as generalization of that for relative class number $h_{K_{M}}^{(-)}([4],[2],[1])$.

The aim of this paper is to give another determinant formula for the polynomial $P_{K_{M}}^{(-)}(X)$. In contrast to the fact that in the determinant in [5], the matrix $D_{M}^{(-)}(X)$ is a product of matrices with entries containing polynomials with complex coefficients, the entries of matrices in our determinant formula are polynomials with integer coefficients.

2. Zeta and L-functions

Let F be a finite extension of k which is contained in some cyclotomic extension K_{M}. Let $N \in \mathbb{A}^{+}$be the conductor of F, that is, K_{N} is the smallest cyclotomic function field containing F. Let $\zeta(s, F)$ be the congruence zeta function of F given by

$$
\zeta(s, F)=\prod_{\mathfrak{p}}\left(1-\frac{1}{N \mathfrak{p}^{s}}\right)^{-1}
$$

where \mathfrak{p} runs over all primes of F. It is well known that there exists a polynomial $P_{F}(X) \in \mathbb{Z}[X]$ of degree $2 g$, where g is the genus of F, such that

$$
\begin{equation*}
\zeta(s, F)=\frac{P_{F}\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)} \tag{2.1}
\end{equation*}
$$

Moreover, the polynomial $P_{F}(X)$ satisfies $P_{F}(0)=1$ and $P_{F}(1)=h_{F}$, where h_{F} is the divisor class number of F. Let \mathcal{O}_{F} be the integral closure of \mathbb{A} in F and $\zeta\left(s, \mathcal{O}_{F}\right)$ be the zeta function of \mathcal{O}_{F} given by

$$
\zeta\left(s, \mathcal{O}_{F}\right)=\prod_{\mathfrak{p}}\left(1-\frac{1}{N \mathfrak{p}^{s}}\right)^{-1}
$$

where \mathfrak{p} runs over all prime ideals of \mathcal{O}_{F}. Then the functions $\zeta(s, F)$ and $\zeta\left(s, \mathcal{O}_{F}\right)$ satisfy the following equality

$$
\begin{equation*}
\zeta(s, F)=\zeta\left(s, \mathcal{O}_{F}\right)\left(1-q^{-s}\right)^{-\left[F^{+}: \mathrm{k}\right]} . \tag{2.2}
\end{equation*}
$$

Let X_{F} be the group of primitive Dirichlet characters of \mathbb{A} associated to F. For $\chi \in X_{F}$, let $L(s, \chi)$ be the L-function associated to χ given by

$$
L(s, \chi)=\prod_{P \in \mathbb{A}_{\mathrm{irr}}^{+}}\left(1-\chi(P) q^{-s \operatorname{deg} P}\right)^{-1}
$$

Then we have

$$
\begin{equation*}
\zeta\left(s, \mathcal{O}_{F}\right)=\prod_{\chi \in X_{F}} L(s, \chi) \tag{2.3}
\end{equation*}
$$

Let $\chi_{0} \in X_{F}$ denote the trivial character. Since $L\left(s, \chi_{0}\right)=\left(1-q^{1-s}\right)^{-1}$, from (2.1), (2.2) and (2.3), we get

$$
\begin{equation*}
\prod_{\chi 0 \neq \chi \in X_{F}} L(s, \chi)=\left(1-q^{-s}\right)^{\left[F^{+}: \mathrm{k}\right]-1} P_{F}\left(q^{-s}\right) . \tag{2.4}
\end{equation*}
$$

For any $\chi \in X_{F}$, let $F_{\chi} \in \mathbb{A}^{+}$be the conductor of χ and $\tilde{\chi}=\chi \circ \pi_{\chi}$, where $\pi_{\chi}:(\mathbb{A} / N \mathbb{A})^{*} \rightarrow\left(\mathbb{A} / F_{\chi} \mathbb{A}\right)^{*}$ is the canonical homomorphism. Then we have

$$
\begin{equation*}
L(s, \tilde{\chi})=L(s, \chi) \prod_{Q \in \mathbb{A}_{\mathrm{irr}}^{+}, Q \mid N}\left(1-\chi(Q) q^{-s \operatorname{deg} Q}\right) \tag{2.5}
\end{equation*}
$$

Thus, by (2.4) and (2.5), we have

$$
\begin{equation*}
\prod_{\chi 0 \neq \chi \in X_{F}} L(s, \tilde{\chi})=\left(1-q^{-s}\right)^{\left[F^{+}: \mathrm{k}\right]-1} P_{F}\left(q^{-s}\right) J_{F}\left(q^{-s}\right) \tag{2.6}
\end{equation*}
$$

where $J_{F}(X)$ is the polynomial given by

$$
J_{F}(X)=\prod_{\chi_{0} \neq \chi \in X_{F},} \prod_{Q \in \mathbb{A}_{\mathrm{irr}}^{+}, Q \mid N}\left(1-\chi(Q) X^{\operatorname{deg} Q}\right)
$$

Let $\zeta^{(-)}(s, F)=\zeta(s, F) / \zeta\left(s, F^{+}\right)$be the relative congruence zeta function of F and $P_{F}^{(-)}(X)=P_{F}(X) / P_{F^{+}}(X)$. Then by (2.1) and (2.4), we have

$$
\zeta^{(-)}(s, F)=P_{F}^{(-)}\left(q^{-s}\right)=\prod_{\chi \in X_{F}^{-}} L(s, \chi)
$$

where $X_{F}^{-}=X_{F} \backslash X_{F^{+}}$. Finally, by (2.5), we have

$$
\begin{equation*}
\prod_{\chi \in X_{F}^{-}} L(s, \tilde{\chi})=P_{F}^{(-)}\left(q^{-s}\right) J_{F}^{(-)}\left(q^{-s}\right) \tag{2.7}
\end{equation*}
$$

where

$$
J_{F}^{(-)}(X)=\prod_{\chi \in X_{F}^{-},} \prod_{Q \in \mathbb{A}_{\mathrm{irr}}^{+}, Q \mid N}\left(1-\chi(Q) X^{\operatorname{deg} Q}\right)
$$

Finally we give some remarks on the polynomial $J_{F}^{(-)}(X)$. They satisfy the following equality ([5, Proposition 3.1])

$$
J_{F}^{(-)}(X)=\prod_{Q \in \mathbb{A}_{\mathrm{irr}}^{+}, Q \mid N} \frac{\left(1-X^{f_{Q} \operatorname{deg} Q}\right)^{g_{Q}}}{\left(1-X^{f_{Q}^{+} \operatorname{deg} Q}\right)^{g_{Q}^{+}}}
$$

where f_{Q}, f_{Q}^{+}are the residue class degrees of Q in $F / \mathrm{k}, F^{+} / \mathrm{k}$, respectively and g_{Q}, g_{Q}^{+}are the number of primes over Q in F, F^{+}, respectively. Hence we see that $J_{F}^{(-)}(X) \in \mathbb{Z}[X]$ and in particular, $J_{F}^{(-)}(X)=1$ if N is a power of some $Q \in \mathbb{A}_{\mathrm{irr}}^{+}$.

3. A determinants formula for $P_{K_{M}}^{(-)}(X)$

From now on, we consider the case $F=K_{M}$, the M th cyclotomic function field for $M \in \mathbb{A}^{+}$Let $\mathcal{R}_{M}=(\mathbb{A} / M \mathbb{A})^{*} / \mathbb{F}_{q}^{*}$. For $\alpha \in(\mathbb{A} / M \mathbb{A})^{*}$, there exists a unique polynomial $A_{\alpha} \in \mathbb{A}$ such that $\operatorname{deg} A_{\alpha}<\operatorname{deg} M$ and $A_{\alpha}+M \mathbb{A}=\alpha$. Write $\operatorname{sgn}_{M}(\alpha) \in \mathbb{F}_{q}^{*}$ for the leading coefficient of $A_{\alpha}, \operatorname{deg}_{M}(\alpha):=\operatorname{deg} A_{\alpha}$. For $\sigma \in \operatorname{Gal}\left(K_{M} / \mathrm{k}\right)$, let α_{σ} be the element of $(\mathbb{A} / M \mathbb{A})^{*}$, which corresponds to σ under the canonical isomorphism $\operatorname{Gal}\left(K_{M} / \mathrm{k}\right) \cong(\mathbb{A} / M \mathbb{A})^{*}$. We define a function $f: \operatorname{Gal}\left(K_{M} / k\right) \rightarrow \mathbb{Z}[X]$ by

$$
f(\sigma):= \begin{cases}X^{\operatorname{deg}_{M}\left(\alpha_{\sigma}\right)}, & \text { if } \operatorname{sgn}_{M}\left(\alpha_{\sigma}\right)=1 \\ 0, & \text { otherwise }\end{cases}
$$

Now we define the matrix

$$
E_{K_{M}}^{(-)}(X)=\left(f\left(\sigma \tau^{-1}\right)-f\left(\sigma\left(\tau / \operatorname{sgn}_{M}\left(\alpha_{\tau}\right)\right)^{-1}\right)\right)_{\sigma, \tau},
$$

where $\sigma, \tau \in \operatorname{Gal}\left(K_{M} / \mathrm{k}\right)$ with $\operatorname{sgn}_{M}\left(\alpha_{\sigma}\right) \neq 1, \operatorname{sgn}_{M}\left(\alpha_{\tau}\right) \neq 1$. Then we have the following main theorem, which gives a determinant formula for the relative congruence zeta functions in cyclotomic function fields.

Theorem 3.1. With notations as above, we have

$$
\operatorname{det} E_{K_{M}}^{(-)}(X)=P_{K_{M}}^{(-)}(X) J_{K_{M}}^{(-)}(X)
$$

Proof. For $\chi \in X_{K_{M}}^{-}$, as in the proof of [5, Theorem 3.1] or [3, Lemma 3], we have

$$
\begin{aligned}
L(s, \tilde{\chi}) & =\sum_{\alpha \in(\mathbb{A} / M \mathbb{A})^{*}, \operatorname{sgn}_{M}(\alpha)=1} \tilde{\chi}(\alpha) q^{-\operatorname{deg}_{M}(\alpha) s} \\
& =\sum_{\sigma \in \operatorname{Gal}\left(K_{M} / \mathrm{k}\right)} \tilde{\chi}\left(\alpha_{\sigma}\right) f(\sigma)\left(q^{-s}\right)
\end{aligned}
$$

Noting that under the isomorphism $\operatorname{Gal}\left(K_{M} / \mathrm{k}\right) \cong(\mathbb{A} / M \mathbb{A})^{*},\{\sigma \in$ $\left.\operatorname{Gal}\left(K_{M} / \mathrm{k}\right) \mid \operatorname{sgn}_{M}\left(\alpha_{\sigma}\right)=1\right\}$ represents $\operatorname{Gal}\left(K_{M} / \mathrm{k}\right) / \operatorname{Gal}\left(K_{M}^{+} / \mathrm{k}\right)$, we have, from [1, Corollary 2.2(ii)],

$$
\prod_{\chi \in X_{K_{M}}^{-}} L(s, \tilde{\chi})=\operatorname{det}\left(f\left(\sigma \tau^{-1}\right)\left(q^{-s}\right)-f\left(\sigma\left(\tau / \operatorname{sgn}_{M}\left(\alpha_{\tau}\right)\right)^{-1}\right)\left(q^{-s}\right)\right)_{\sigma, \tau}
$$

Now from (2.7), we get the result.
Example 3.2. For $q=3, M=T^{2}+1$, since M is irreducible, we have $\operatorname{det} E_{K_{M}}^{(-)}(X)=P_{K_{M}}^{(-)}(X)$. Then we have $\left\{A_{\alpha_{\sigma}} \mid \sigma \in \operatorname{Gal}\left(K_{M} / \mathrm{k}\right), \operatorname{sgn}_{M}\left(\alpha_{\sigma}\right) \neq\right.$ $1\}=\{-1,-T,-T+1,-T+2\}$ and so

$$
\begin{aligned}
P_{K_{M}}^{(-)}(X) & =\operatorname{det} E_{K_{M}}^{(-)}(X) \\
& =\left|\begin{array}{rrrr}
1 & -X & X & X \\
X & 1 & X & -X \\
X & X & 1 & X \\
X & -X & -X & 1
\end{array}\right| \\
& =1-2 X^{2}+9 X^{4}
\end{aligned}
$$

Thus we have the same result as in [5, Example 5.1].

References

[1] J. Ahn, S. Choi, and H. Jung, Class number formulae in the form of a product of determinants in function fields. J. Aust. Math. Soc. 78 (2005), 227-238.
[2] S. Bae and P-L. Kang, Class numbers of cyclotomic function fields. Acta Arith. 102 (2002), 251-259.
[3] S. Galovich and M. Rosen, The class number of cyclotomic function fields. J. Number Theory 13 (1981), no. 3, 363-375.
[4] M. Rosen, A note on the relative class number in function fields. Proc. Amer. Math. Soc. 125 (1997), 1299-1303.
[5] D. Shiomi, A determinant formula for relative congruence zeta functions for cyclotomic function fields. J. Aust. Math. Soc. 89 (2010), 133-144.
*
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: jhahn@cnu.ac.kr
**
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: dska@cnu.ac.kr

