JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 28, No. 1, February 2015 http://dx.doi.org/10.14403/jcms.2015.28.1.83

A DETERMINANT FORMULA FOR THE RELATIVE CONGRUENT ZETA FUNCTION IN CYCLOTOMIC FUNCTION FIELDS

JAEHYUN AHN* AND DONG-SEOK KA**

ABSTRACT. In this paper we give a determinant formula for the relative congruent zeta function in cyclotomic function fields.

1. Introduction

Let $\mathbf{k} = \mathbb{F}_q(T)$ be the rational function field over the finite field \mathbb{F}_q and $\mathbb{A} = \mathbb{F}_q[T]$. Let $\infty = (1/T)$ be the prime of \mathbf{k} associated to 1/T, which is called the infinite prime of \mathbf{k} . Write $\mathbb{A}^+ = \{1 \neq M \in \mathbb{A} : M \text{ is monic}\}$ and $\mathbb{A}_{irr}^+ = \{P \in \mathbb{A}^+ : P \text{ is irreducible}\}$ for simplicity. For any $M \in \mathbb{A}^+$, write K_M for the Mth cyclotomic function field and K_M^+ for the maximal real subfield of K_M .

It is known that there exists a polynomial $P_{K_M}(X) \in \mathbb{Z}[X]$ such that

$$\zeta(s, K_M) = \frac{P_{K_M}(q^{-s})}{(1 - q^{-s})(1 - q^{1-s})}$$

where $\zeta(s, K_M)$ is the congruence zeta function of K_M , and $P_{K_M}(1)$ is equal to the divisor class number h_{K_M} of K_M . Let $\zeta^{(-)}(s, K_M) = \zeta(s, K_M)/\zeta(s, K_M^+)$, called the relative congruence zeta function of K_M and $P_{K_M}^{(-)}(X) = P_{K_M}(X)/P_{K_M^+}(X)$, where $P_{K_M^+}(X)$ is the polynomial corresponding to the congruence zeta function $\zeta(s, K_M^+)$ for K_M^+ . Then we have $\zeta^{(-)}(s, K_M) = P_{K_M}^{(-)}(q^{-s})$ and $P_{K_M}^{(-)}(1) = h_{K_M}^-$, where $h_{K_M}^- = h_{K_M}/h_{K_M^+}$ is the relative divisor class number of K_M .

Received August 05, 2014; Accepted September 26, 2014.

²⁰¹⁰ Mathematics Subject Classification: Primary 11R58, 11R60, 11R38.

Key words and phrases: Congruence zeta function, cyclotomic function fields. Correspondence should be addressed to Jaehyun Ahn, jhahn@cnu.ac.kr.

This study was financially supported by research fund of Chungnam National University in 2011.

In recent paper [5], Shiomi has expressed the polynomial $P_{K_M}^{(-)}(X)$ as determinant of matrix $D_M^{(-)}(X)$ up to some polynomial $J_{K_M}^{(-)}(X)$. Since $h_{K_M}^- = P_{K_M}^{(-)}(1)$, this determinant formula for $P_{K_M}^{(-)}(X)$ can be regarded as generalization of that for relative class number $h_{K_M}^{(-)}$ ([4], [2], [1]).

The aim of this paper is to give another determinant formula for the polynomial $P_{K_M}^{(-)}(X)$. In contrast to the fact that in the determinant in [5], the matrix $D_M^{(-)}(X)$ is a product of matrices with entries containing polynomials with complex coefficients, the entries of matrices in our determinant formula are polynomials with integer coefficients.

2. Zeta and *L*-functions

Let F be a finite extension of k which is contained in some cyclotomic extension K_M . Let $N \in \mathbb{A}^+$ be the conductor of F, that is, K_N is the smallest cyclotomic function field containing F. Let $\zeta(s, F)$ be the congruence zeta function of F given by

$$\zeta(s,F) = \prod_{\mathfrak{p}} \left(1 - \frac{1}{N\mathfrak{p}^s}\right)^{-1},$$

where \mathfrak{p} runs over all primes of F. It is well known that there exists a polynomial $P_F(X) \in \mathbb{Z}[X]$ of degree 2g, where g is the genus of F, such that

(2.1)
$$\zeta(s,F) = \frac{P_F(q^{-s})}{(1-q^{-s})(1-q^{1-s})}$$

Moreover, the polynomial $P_F(X)$ satisfies $P_F(0) = 1$ and $P_F(1) = h_F$, where h_F is the divisor class number of F. Let \mathcal{O}_F be the integral closure of \mathbb{A} in F and $\zeta(s, \mathcal{O}_F)$ be the zeta function of \mathcal{O}_F given by

$$\zeta(s, \mathcal{O}_F) = \prod_{\mathfrak{p}} \left(1 - \frac{1}{N\mathfrak{p}^s} \right)^{-1},$$

where \mathfrak{p} runs over all prime ideals of \mathcal{O}_F . Then the functions $\zeta(s, F)$ and $\zeta(s, \mathcal{O}_F)$ satisfy the following equality

(2.2)
$$\zeta(s,F) = \zeta(s,\mathcal{O}_F)(1-q^{-s})^{-[F^+:k]}.$$

84

85

Let X_F be the group of primitive Dirichlet characters of \mathbb{A} associated to F. For $\chi \in X_F$, let $L(s, \chi)$ be the *L*-function associated to χ given by

$$L(s,\chi) = \prod_{P \in \mathbb{A}_{\operatorname{irr}}^+} \left(1 - \chi(P)q^{-s \operatorname{deg} P}\right)^{-1}.$$

Then we have

(2.3)
$$\zeta(s, \mathcal{O}_F) = \prod_{\chi \in X_F} L(s, \chi).$$

Let $\chi_0 \in X_F$ denote the trivial character. Since $L(s, \chi_0) = (1 - q^{1-s})^{-1}$, from (2.1), (2.2) and (2.3), we get

(2.4)
$$\prod_{\chi_0 \neq \chi \in X_F} L(s,\chi) = (1-q^{-s})^{[F^+:k]-1} P_F(q^{-s}).$$

For any $\chi \in X_F$, let $F_{\chi} \in \mathbb{A}^+$ be the conductor of χ and $\tilde{\chi} = \chi \circ \pi_{\chi}$, where $\pi_{\chi} : (\mathbb{A}/N\mathbb{A})^* \to (\mathbb{A}/F_{\chi}\mathbb{A})^*$ is the canonical homomorphism. Then we have

(2.5)
$$L(s,\tilde{\chi}) = L(s,\chi) \prod_{Q \in \mathbb{A}^+_{\operatorname{irr}}, Q \mid N} \left(1 - \chi(Q)q^{-s \deg Q}\right).$$

Thus, by (2.4) and (2.5), we have

(2.6)
$$\prod_{\chi_0 \neq \chi \in X_F} L(s, \tilde{\chi}) = (1 - q^{-s})^{[F^+:k]-1} P_F(q^{-s}) J_F(q^{-s}),$$

where $J_F(X)$ is the polynomial given by

$$J_F(X) = \prod_{\chi_0 \neq \chi \in X_F, \ Q \in \mathbb{A}^+_{\operatorname{irr}}, \ Q|N} \prod_{(1 - \chi(Q)X^{\deg Q}).$$

Let $\zeta^{(-)}(s,F) = \zeta(s,F)/\zeta(s,F^+)$ be the relative congruence zeta function of F and $P_F^{(-)}(X) = P_F(X)/P_{F^+}(X)$. Then by (2.1) and (2.4), we have

$$\zeta^{(-)}(s,F) = P_F^{(-)}(q^{-s}) = \prod_{\chi \in X_F^-} L(s,\chi)$$

where $X_F^- = X_F \setminus X_{F^+}$. Finally, by (2.5), we have

(2.7)
$$\prod_{\chi \in X_F^-} L(s, \tilde{\chi}) = P_F^{(-)}(q^{-s}) J_F^{(-)}(q^{-s}),$$

where

$$J_F^{(-)}(X) = \prod_{\chi \in X_F^-, Q \in \mathbb{A}_{\mathrm{irr}}^+, Q \mid N} \prod_{(1 - \chi(Q)X^{\deg Q})} (1 - \chi(Q)X^{\deg Q}).$$

Finally we give some remarks on the polynomial $J_F^{(-)}(X)$. They satisfy the following equality ([5, Proposition 3.1])

$$J_F^{(-)}(X) = \prod_{Q \in \mathbb{A}_{irr}^+, Q \mid N} \frac{(1 - X^{f_Q \deg Q})^{g_Q}}{(1 - X^{f_Q^+ \deg Q})^{g_Q^+}},$$

where f_Q, f_Q^+ are the residue class degrees of Q in $F/k, F^+/k$, respectively and g_Q, g_Q^+ are the number of primes over Q in F, F^+ , respectively. Hence we see that $J_F^{(-)}(X) \in \mathbb{Z}[X]$ and in particular, $J_F^{(-)}(X) = 1$ if N is a power of some $Q \in \mathbb{A}^+_{irr}$.

3. A determinants formula for $P_{K_M}^{(-)}(X)$

From now on, we consider the case $F = K_M$, the *M*th cyclotomic function field for $M \in \mathbb{A}^+$ Let $\mathcal{R}_M = (\mathbb{A}/M\mathbb{A})^*/\mathbb{F}_q^*$. For $\alpha \in (\mathbb{A}/M\mathbb{A})^*$, there exists a unique polynomial $A_\alpha \in \mathbb{A}$ such that deg $A_\alpha < \deg M$ and $A_\alpha + M\mathbb{A} = \alpha$. Write $\operatorname{sgn}_M(\alpha) \in \mathbb{F}_q^*$ for the leading coefficient of A_α , deg_M(α) := deg A_α . For $\sigma \in \operatorname{Gal}(K_M/k)$, let α_σ be the element of $(\mathbb{A}/M\mathbb{A})^*$, which corresponds to σ under the canonical isomorphism $\operatorname{Gal}(K_M/k) \cong (\mathbb{A}/M\mathbb{A})^*$. We define a function $f : \operatorname{Gal}(K_M/k) \to \mathbb{Z}[X]$ by

$$f(\sigma) := \begin{cases} X^{\deg_M(\alpha_\sigma)}, & \text{if } \operatorname{sgn}_M(\alpha_\sigma) = 1\\ 0, & \text{otherwise.} \end{cases}$$

Now we define the matrix

$$E_{K_M}^{(-)}(X) = \left(f(\sigma\tau^{-1}) - f(\sigma(\tau/\operatorname{sgn}_M(\alpha_{\tau}))^{-1})\right)_{\sigma,\tau},$$

where $\sigma, \tau \in \text{Gal}(K_M/\text{k})$ with $\text{sgn}_M(\alpha_{\sigma}) \neq 1, \text{sgn}_M(\alpha_{\tau}) \neq 1$. Then we have the following main theorem, which gives a determinant formula for the relative congruence zeta functions in cyclotomic function fields.

THEOREM 3.1. With notations as above, we have

$$\det E_{K_M}^{(-)}(X) = P_{K_M}^{(-)}(X)J_{K_M}^{(-)}(X).$$

86

Proof. For $\chi \in X_{K_M}^-$, as in the proof of [5, Theorem 3.1] or [3, Lemma 3], we have

$$L(s, \tilde{\chi}) = \sum_{\alpha \in (\mathbb{A}/M\mathbb{A})^*, \operatorname{sgn}_M(\alpha) = 1} \tilde{\chi}(\alpha) q^{-\deg_M(\alpha)s}$$
$$= \sum_{\sigma \in \operatorname{Gal}(K_M/k)} \tilde{\chi}(\alpha_{\sigma}) f(\sigma)(q^{-s}).$$

Noting that under the isomorphism $\operatorname{Gal}(K_M/\mathbf{k}) \cong (\mathbb{A}/M\mathbb{A})^*$, $\{\sigma \in \operatorname{Gal}(K_M/\mathbf{k}) | \operatorname{sgn}_M(\alpha_{\sigma}) = 1\}$ represents $\operatorname{Gal}(K_M/\mathbf{k}) / \operatorname{Gal}(K_M^+/\mathbf{k})$, we have, from [1, Corollary 2.2(ii)],

$$\prod_{\chi \in X_{K_M}^-} L(s, \tilde{\chi}) = \det \left(f(\sigma \tau^{-1})(q^{-s}) - f(\sigma(\tau/\operatorname{sgn}_M(\alpha_\tau))^{-1})(q^{-s}) \right)_{\sigma, \tau}.$$

Now from (2.7), we get the result.

EXAMPLE 3.2. For q = 3, $M = T^2 + 1$, since M is irreducible, we have det $E_{K_M}^{(-)}(X) = P_{K_M}^{(-)}(X)$. Then we have $\{A_{\alpha\sigma} | \sigma \in \text{Gal}(K_M/k), \text{sgn}_M(\alpha_\sigma) \neq 1\} = \{-1, -T, -T + 1, -T + 2\}$ and so

$$P_{K_M}^{(-)}(X) = \det E_{K_M}^{(-)}(X)$$

$$= \begin{vmatrix} 1 & -X & X & X \\ X & 1 & X & -X \\ X & X & 1 & X \\ X & -X & -X & 1 \end{vmatrix}$$

$$= 1 - 2X^2 + 9X^4.$$

Thus we have the same result as in [5, Example 5.1].

References

- J. Ahn, S. Choi, and H. Jung, Class number formulae in the form of a product of determinants in function fields. J. Aust. Math. Soc. 78 (2005), 227-238.
- [2] S. Bae and P-L. Kang, Class numbers of cyclotomic function fields. Acta Arith. 102 (2002), 251-259.
- [3] S. Galovich and M. Rosen, The class number of cyclotomic function fields. J. Number Theory 13 (1981), no. 3, 363-375.
- M. Rosen, A note on the relative class number in function fields. Proc. Amer. Math. Soc. 125 (1997), 1299-1303.
- [5] D. Shiomi, A determinant formula for relative congruence zeta functions for cyclotomic function fields. J. Aust. Math. Soc. 89 (2010), 133-144.

Jaehyun Ahn and Dong-Seok Ka

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: jhahn@cnu.ac.kr

**

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: dska@cnu.ac.kr

88

*