DOI QR코드

DOI QR Code

Effects of High Stocking Density on the Expression of Metabolic Related Genes in Two Strains of Chickens

닭의 고밀도사양 스트레스가 품종 간 체내대사 유전자 발현에 미치는 영향

  • Sohn, Sea Hwan (Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Jang, In Surk (Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology) ;
  • An, Young Sook (Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Moon, Yang Soo (Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology)
  • 손시환 (경남과학기술대학교 동물생명과학과) ;
  • 장인석 (경남과학기술대학교 동물생명과학과) ;
  • 안영숙 (경남과학기술대학교 동물생명과학과) ;
  • 문양수 (경남과학기술대학교 동물생명과학과)
  • Received : 2015.02.04
  • Accepted : 2015.03.09
  • Published : 2015.03.31

Abstract

Chickens are exposed to the external and internal stressors such as low and high temperature, high stocking density, feed restriction and disease. There have been a few studies on gene expressions through the investigation of chickens under direct exposure to the stress of high stocking density. The objective of the present study was to determine the expressions of genes associated with stress, endoplasmic reticulum (ER)-stress, lipid and glucose metabolism in two strains of chickens, Korean Native Chicken (KNC) and White Leghorn (WL), raised in high stocking density. A total of 164 chickens aged 40 weeks were randomly allotted to a $540cm^2/bird$ stocking density (control), whereas the chickens in a high density group were assigned in a $311cm^2/bird$ stocking density with feeding ad libitum for 10 weeks. Total RNA was extracted from the live for qRT-PCR. The expression levels of hsp70 and $hsp90{\alpha}$ were higher in WL subjected to stress with high stocking density compared with those genes in control (P<0.05), while the expressions of genes were not affected in KNC. ER stress marker gene XBP1 was also highly expressed in WL with stress (P<0.05), but the stress of high stocking density did not influence to ER stress marker genes in KNC. Lipid metabolism associated genes including FABP4, FATP1 and ACSL1 were highly expressed in WL compared with KNC when subjected to high stocking density stress (P<0.05). The expression of glucose transport gene GLUT2 and GLUT8 were increased in chickens exposured to the stress of high stocking density (P<0.05). The data indicate that WL is more sensitive to the stress of high stocking density compared with KNC and the stress may influence the modulation of lipid and glucose metabolism in the liver of chickens.

본 연구는 밀사에 의한 환경스트레스가 닭의 품종에 따라 스트레스 및 대사 연관 유전자들의 발현에 어떤 영향을 미치는지 알아보고자 실시하였다. 공시계는 한국재래닭과 백색레그혼으로 두 품종 모두 40주령 때 대조구($540cm^2$/수) 및 고밀도구($311cm^2$/수)로 분리하고, 50주령까지 10주간 사육하였다. 사양시험 종료 후, 각 개체의 간으로부터 total RNA를 추출하고, 스트레스, 소포체(ER) 스트레스 및 대사 연관유전자들의 발현을 real-time PCR을 이용하여 분석하였다. 한국재래계는 분석된 모든 스트레스 표지 유전자들의 발현이 밀사구와 대조구 사이에 유의적인 변화를 보이지 않았다. 그러나 백색레그혼의 경우, HSP70과 $HSP90{\alpha}$ 유전자의 발현이 유의적으로 높게 나타났다(P<0.05). 분석된 ATF6, GRP78, SREBP2 등의 발현은 품종 간 차이를 볼 수 없었지만, XBP1의 경우 백색레그혼이 한국재래계에 비하여 높은 발현을 보였다(P<0.05). 분석된 유전자들 중 FABP4, FATP1, ACSL1 등의 경우, 한국재래계에 비하여 백색레그혼에서 높은 유전자 발현을 보였다(P<0.05). GLUT의 발현은 품종 간에는 영향을 받지 않지만, 밀사에 의한 영향을 받고 있음을 보여주었다. 고밀도사양 체계는 닭의 품종과 관계없이 스트레스 요인이 될 수 있으며, 닭의 품종이나 개량의 정도에 따라 스트레스 반응에 대한 유전적 차이가 있음을 시사하고, 또한 밀사와 같은 환경적 스트레스는 간의 지방 및 포도당 대사에 영향을 미칠 수 있음을 보여주었다.

Keywords

References

  1. Al-Aqil A, Zulkifli I 2009 Changes in heat shock protein 70 expression and blood characteristics in transported broiler chickens as affected by housing and early age feed restriction. Poult Sci 88(7):1358-1364. https://doi.org/10.3382/ps.2008-00554
  2. Bedu E, Chainier F, Sibille B, Meister R, Dallevet G, Garin D, Duchamp C 2002 Increased lipogenesis in isolated hepatocytes from cold-acclimated ducklings. Am J Physiol Regul Integr Comp Physiol 283(5):R1245-1253. https://doi.org/10.1152/ajpregu.00681.2001
  3. Beloor J, Kang HK, Kim YJ, Subramani VK, Jang IS, Sohn SH, Moon YS 2010 The effect of stocking density on stress related genes and telomeric broiler chickens. Asian-Aust J Anim Sci 23:437-443. https://doi.org/10.5713/ajas.2010.90400
  4. Borradaile NM, Han X, Harp JD, Gale SE, Ory DS, Schaffer JE 2006 Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res 47(12):2726-2737. https://doi.org/10.1194/jlr.M600299-JLR200
  5. Braun EJ, Sweazea KL 2008 Glucose regulation in birds. Comp Biochem Physiol B Biochem Mol Biol 151(1):1-9. https://doi.org/10.1016/j.cbpb.2008.05.007
  6. Butler EJ 1975 Lipid metabolism in the fowl under normal and abnormal circumstances. Proc Nutr Soc 34(1):29-34. https://doi.org/10.1079/PNS19750007
  7. Cahaner A, Ajuh JA, Siegmund-Schultze M, Azoulay Y, Druyan S, Zarate AV 2008 Effects of the genetically reduced feather coverage in naked neck and featherless broilers on their performance under hot conditions. Poult Sci 87(12): 2517-2527. https://doi.org/10.3382/ps.2008-00284
  8. Carver FM1, Shibley IA Jr, Pennington JS, Pennington SN 2001 Differential expression of glucose transporters during chick embryogenesis. Cell Mol Life Sci 58(4):645-652. https://doi.org/10.1007/PL00000887
  9. Cnop M, Foufelle F, Velloso LA 2012 Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med 18(1): 59-68. https://doi.org/10.1016/j.molmed.2011.07.010
  10. Craig JV, Craig JA, Vargas Vargas J 1986 Corticosteroids and other indicators of hens' well-being in four laying-house environments. Poult Sci 65(5):856-863. https://doi.org/10.3382/ps.0650856
  11. Davison TF, Freeman BM, Rea J 1985 Effects of continuous treatment with synthetic ACTH1-24 or corticosterone on immature Gallus domesticus. Gen Comp Endocrinol 59(3): 416-423. https://doi.org/10.1016/0016-6480(85)90399-5
  12. Deeb N, Cahaner A 1999 The effects of naked neck genotypes, ambient temperature, and feeding status and their interactions on body temperature and performance of broilers. Poult Sci 78(10):1341-1346. https://doi.org/10.1093/ps/78.10.1341
  13. Dupont J, Dagou C, Derouet M, Simon J, Taouis M 2004 Early steps of insulin receptor signaling in chicken and rat: apparent refractoriness in chicken muscle. Domest Anim Endocrinol 26(2):127-142. https://doi.org/10.1016/j.domaniend.2003.09.004
  14. Gornati R, Papis E, Simona R, Genciana T, Marco S, Giovanni B 2004 Rearing density influences the expression of stress-related genes in sea bass (Dicentrarchus labrax L.). Gene 341:111-118. https://doi.org/10.1016/j.gene.2004.06.020
  15. Hansen SW 1996 Selection for behavioural traits in farm mink. Applied Animal Behaviour Sci 49:137-148. https://doi.org/10.1016/0168-1591(96)01045-3
  16. Heald PJ 1963 The metabolism of carbohydrate by liver of the domestic fowl. Biochem J 86:103-110. https://doi.org/10.1042/bj0860103
  17. Heckert RA, Estevez I, Russek-Cohen E, Pettit-Riley R 2002 Effects of density and perch availability on the immune status of broilers. Poult Sci 81(4):451-457. https://doi.org/10.1093/ps/81.4.451
  18. Kono T, Nishida M, Nishiki Y, Seki Y, Sato K, Akiba Y 2005 Characterisation of glucose transporter (GLUT) gene expression in broiler chickens. Br Poult Sci 46(4):510-515. https://doi.org/10.1080/00071660500181289
  19. Livak KJ, Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods 25(4):402-408. https://doi.org/10.1006/meth.2001.1262
  20. Mashaly MM, Webb ML, Youtz SL, Roush WB, Graves HB 1984 Changes in serum corticosterone concentration of laying hens as a response to increased population density. Poult Sci 63(11):2271-2274. https://doi.org/10.3382/ps.0632271
  21. McIlroy SG, Goodall EA, McMurray CH 1987 A contact dermatitis of broilers-epidemiological findings. Avian Pathol 16(1):93-105. https://doi.org/10.1080/03079458708436355
  22. Mumma JO, Thaxton JP, Vizzier-Thaxton Y, Dodson WL 2006 Physiological stress in laying hens. Poult Sc, 85(4):761-769. https://doi.org/10.1093/ps/85.4.761
  23. O'Hea EK, Leveille GA 1968 Lipogenesis in isolated adipose tissue of the domestic chick (Gallus domesticus). Comp Biochem Physiol 26(1):111-120 https://doi.org/10.1016/0010-406X(68)90317-4
  24. Price EO 2002 Animal Domestication and Behavior. Wallingford: CABI Publishing. 297 p.
  25. Puvadolpirod S, Thaxton JP 2000 Model of physiological stress in chickens 4. Digestion and metabolism. Poult Sci 79: 383-390. https://doi.org/10.1093/ps/79.3.383
  26. Renli Q, Chao S, Jun Y, Chan S, Yunfei X 2012 Changes in fat metabolism of black-bone chickens during early stages of infection with Newcastle disease virus. Animal 6(8): 1246-1252. https://doi.org/10.1017/S1751731112000365
  27. Sandercock DA, Hunter RR, Mitchell MA, Hocking PM 2006 Thermoregulatory capacity and muscle membrane integrity are compromised in broilers compared with layers at the same age or body weight. Br Poult Sci 47:322-329. https://doi.org/10.1080/00071660600732346
  28. Sharma NK, Das SK, Mondal AK, Hackney OG, Chu WS, Kern PA, Rasouli N, Spencer HJ, Yao-Borengasser A, Elbein SC 2008 Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J Clin Endocrinol Metab 93(11):4532-4541. https://doi.org/10.1210/jc.2008-1001
  29. Siegel HS, Van Kampen M 1984 Energy relationships in growing chickens given daily injections of corticosterone. Br Poult Sci 25(4):477-485. https://doi.org/10.1080/00071668408454889
  30. Sijtsma SR, West CE, Rombout JH, Van der Zijpp AJ 1989 Effect of Newcastle disease virus infection on vitamin A metabolism in chickens. J Nutr 119(6):940-947. https://doi.org/10.1093/jn/119.6.940
  31. Sohn SH, Subramani VK, Moon YS, Jang IS 2012 Telomeric DNA quantity, DNA damage, and heat shock protein gene expression as physiological stress markers in chickens. Poult Sci 91(4):829-836. https://doi.org/10.3382/ps.2011-01904
  32. Sohn SH, Cho EJ, Park DB, Jang IS, Moon YS 2014 Comparison of stress response between Korean Native Chickens and single comb White Leghorns subjected to a high stocking density. Korean J Poult Sci 41(2):115-125. https://doi.org/10.5536/KJPS.2014.41.2.115
  33. Soleimani AF, Zulkifli I, Omar AR, Raha AR 2011 Physiological responses of 3 chicken breeds to acute heat stress. Poult Sci 90(7):1435-1440. https://doi.org/10.3382/ps.2011-01381
  34. Soleimani AF, Zulkifli I, Omar AR, Raha AR 2012 The relationship between adrenocortical function and Hsp70 expression in socially isolated Japanese quail. Comp Biochem Physiol A Mol Integr Physiol 161(2):140-144. https://doi.org/10.1016/j.cbpa.2011.10.003
  35. Tinker DA, Brosnan JT, Herzberg GR 1986 Interorgan metabolism of amino acids, glucose, lactate, glycerol and uric acid in the domestic fowl (Gallus domesticus). Biochem J 15; 240(3):829-836. https://doi.org/10.1042/bj2400829
  36. Warriss PD, Kestin SC, Brown SN, Bevis EA 1988 Depletion of glycogen reserves in fasting broiler chickens. Br Poult Sci 29(1):149-154. https://doi.org/10.1080/00071668808417036
  37. Zulkifli I, Dass RT, Norma MT 1999 Acute heat stress effects on physiology and fear-related behaviour in red jungle fowl and domestic fowl. Can J Anim Sci 79:165-170. https://doi.org/10.4141/A98-022

Cited by

  1. Effects of Lycopene on the Expression of Lipid Metabolism, Glucose Transport and Pro-Inflammatory Related Genes in Chickens vol.42, pp.3, 2015, https://doi.org/10.5536/KJPS.2015.42.3.231