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Abstract

Alexandrov topologies are the topologies induced by relations. This paper addresses the prop-
erties of Alexandrov topologies as the extensions of strong topologies and strong cotopologies
in complete residuated lattices. With the concepts of Zhang’s completeness, the notions are
discussed as extensions of interior and closure operators in a sense as Pawlak’s the rough set
theory. It is shown that interior operators are meet preserving maps and closure operators are
join preserving maps in the perspective of Zhang’s definition.
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1. Introduction

Pawlak [1, 2] introduced the rough set theory as a formal tool to deal with imprecision and
uncertainty in the data analysis. Hájek [3] introduced a complete residuated lattice which
is an algebraic structure for many valued logic. By using the concepts of lower and upper
approximation operators, information systems and decision rules are investigated in complete
residuated lattices [3-7]. Zhang and Fan [8] and Zhang et al. [9] introduced the fuzzy complete
lattice which is defined by join and meet on fuzzy partially ordered sets. Alexandrov topologies
[7, 10-12] were introduced the extensions of fuzzy topology and strong topology [13].

In this paper, we investigate the properties of Alexandrov topologies as the extensions of
strong topologies and strong cotopologies in complete residuated lattices. Moreover, we study
the notions as extensions of interior and closure operators. We give their examples.

Definition 1.1. [3, 4] An algebra (L,∧,∨,�,→,⊥,>) is called a complete residuated lattice
if it satisfies the following conditions:

(C1) L = (L,≤,∨,∧,⊥,>) is a complete lattice with the greatest element > and the least
element ⊥;

(C2) (L,�,>) is a commutative monoid;
(C3) x� y ≤ z iff x ≤ y → z for x, y, z ∈ L.

In this paper, we assume (L,∧,∨,�,→,∗⊥,>) is a complete residuated lattice with a
negation; i.e., x∗∗ = x. For α ∈ L,A,>x ∈ LX , (α→ A)(x) = α→ A(x), (α�A)(x) =

α�A(x) and >x(x) = >,>x(x) = ⊥, otherwise.

Lemma 1.2. [3, 4] For each x, y, z, xi, yi ∈ L, the following properties hold.
(1) If y ≤ z, then x� y ≤ x� z.
(2) If y ≤ z, then x→ y ≤ x→ z and z → x ≤ y → x.
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(3) x→ y = > iff x ≤ y.
(4) x→ > = > and > → x = x.
(5) x� y ≤ x ∧ y.
(6) x� (

∨
i∈Γ yi) =

∨
i∈Γ(x� yi).

(7) x→ (
∧
i∈Γ yi) =

∧
i∈Γ(x→ yi) and (

∨
i∈Γ xi)→ y =∧

i∈Γ(xi → y).

(8)
∨
i∈Γ xi →

∨
i∈Γ yi ≥

∧
i∈Γ(xi → yi) and

∧
i∈Γ xi →∧

i∈Γ yi ≥
∧
i∈Γ(xi → yi).

(9) (x→ y)� x ≤ y and (y → z)� (x→ y) ≤ (x→ z).

(10) x → y ≤ (y → z) → (x → z) and x → y ≤ (z →
x)→ (z → y).

(11)
∧
i∈Γ x

∗
i = (

∨
i∈Γ xi)

∗ and
∨
i∈Γ x

∗
i = (

∧
i∈Γ xi)

∗.

(12) (x � y) → z = x → (y → z) = y → (x → z) and
(x� y)∗ = x→ y∗.

(13) x∗ → y∗ = y → x and (x→ y)∗ = x� y∗.
(14) y → z ≤ x� y → x� z.
(15) x → y � z ≥ (x → y) � z and (x → y) → z ≥

x� (y → z).

Definition 1.3. [7, 10, 12, 13] A subset τ ⊂ LX is called an
Alexandrov topology if it satisfies:

(T1) ⊥X ,>X ∈ τ where >X(x) = > and ⊥X(x) = ⊥ for
x ∈ X .

(T2) If Ai ∈ τ for i ∈ Γ,
∨
i∈ΓAi,

∧
i∈ΓAi ∈ τ .

(T3) α�A ∈ τ for all α ∈ L and A ∈ τ .
(T4) α→ A ∈ τ for all α ∈ L and A ∈ τ .
A subset τ ⊂ LX satisfying (T1), (T3) and (T4) is called a

strong topology if it satisfies:
(ST) If Ai ∈ τ for i ∈ Γ,

∨
i∈ΓAi,∧i∈ΛAi ∈ τ for each

finite index Λ ⊂ Γ.
A subset τ ⊂ LX satisfying (T1), (T3) and (T4) is called a

strong cotopology if it satisfies:
(SC) If Ai ∈ τ for i ∈ Γ,

∧
i∈ΓAi,∨i∈ΛAi ∈ τ for each

finite index Λ ⊂ Γ.

Remark 1.4. Each Alexandrov topology is both strong topol-
ogy and strong cotopology.

Definition 1.5. [8, 9] LetX be a set. A function eX : X×X →
L is called:

(E1) reflexive if eX(x, x) = > for all x ∈ X ,
(E2) transitive if eX(x, y) � eX(y, z) ≤ eX(x, z), for all

x, y, z ∈ X ,
(E3) if eX(x, y) = eX(y, x) = >, then x = y.
If e satisfies (E1) and (E2), (X, eX) is a fuzzy preordered set.

If e satisfies (E1), (E2) and (E3), (X, eX) is a fuzzy partially
ordered set.

Example 1.6. (1) We define a function eLX : LX × LX → L

as eLX (A,B) =
∧
x∈X(A(x)→ B(x)). Then (LX , eLX ) is a

fuzzy partially ordered set from Lemma 1.2 (8).
(2) Let τ be an Alexandrov topology. We define a function

eτ : τ × τ → L as eτ (A,B) =
∧
x∈X(A(x) → B(x)). Then

(τ, eτ ) is a fuzzy partially ordered set.

Definition 1.7. [8, 9] Let (X, eX) be a fuzzy partially ordered
set and A ∈ LX .

(1) A point x0 is called a join of A, denoted by x0 = tA, if
it satisfies

(J1) A(x) ≤ eX(x, x0),
(J2)

∧
x∈X(A(x)→ eX(x, y)) ≤ eX(x0, y).

A point x1 is called a meet of A, denoted by x1 = uA, if it
satisfies

(M1) A(x) ≤ eX(x1, x),
(M2)

∧
x∈X(A(x)→ eX(y, x)) ≤ eX(y, x1).

Remark 1.8. [8, 9] Let (X, eX) be a fuzzy partially ordered
set and A ∈ LX .

(1) x0 is a join of A iff∧
x∈X(A(x)→ eX(x, y)) = eX(x0, y).

(2) x1 is a meet of A iff
∧
x∈X(A(x) → eX(y, x)) =

eX(y, x1).
(3) If x0 is a join of A, then it is unique because eX(x0, y) =

eX(y0, y) for all y ∈ X , put y = x0 or y = y0, then eX(x0, y0)

= eX(y0, x0) = > implies x0 = y0. Similarly, if a meet of A
exist, then it is unique.

Remark 1.9. [8, 9] Let (LX , eLX ) be a fuzzy partially ordered
and Φ ∈ LLX .

(1) Since∧
A∈LX

(Φ(A)→ eLX (A,B)) = eLX (
∨

A∈LX
(Φ(A)�A), B)

= eLX (tΦ, B),

then tΦ =
∨
A∈LX (Φ(A)�A).

(2) We have uΦ =
∧
A∈LX (Φ(A)→ A) because

∧
A∈LX (Φ(A)→ eLX (B,A)

=
∧
A∈LX eLX (B, (Φ(A)→ A))

= eLX (B,
∧
A∈LX (Φ(A)→ A)).

2. Some Properties of Alexandrov Topologies

Theorem 2.1. (1) A subset τ ⊂ LX is an Alexandrov topology
on X iff for each Φ : τ → L, tΦ ∈ τ and uΦ ∈ τ.
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(2) τ is an Alexandrov topology on X iff τ∗ = {A∗ ∈ LX |
A ∈ τ} is an Alexandrov topology on X .

Proof. (1) (⇒) For each Φ : τ → L, we define

P =
∨
A∈τ

(Φ(A)�A).

Since τ is an Alexandrov topology on X , (Φ(A) � A) ∈ τ .
Thus P ∈ τ . Then P = tΦ from:

eτ (P,B) = eτ (
∨
A∈τ (Φ(A)�A), B)

=
∧
A∈τ (Φ(A)→ eτ (A,B))

= eτ (tΦ, B).

For each Φ : τ → L, we define Q =
∧
A∈τ (Φ(A) → A).

Since τ is an Alexandrov topology on X , (Φ(A) → A) ∈ τ .
Thus Q ∈ τ . Then Q = uΦ from:

eτ (B,Q) = eτ (B,
∧
A∈τ (Φ(A)→ A))

=
∧
A∈τ (Φ(A)→ eτ (B,A))

= eτ (B,uΦ).

(⇒) (T1) For Φ(A) = ⊥ for allA ∈ τ , tΦ =
∨
A∈τ (Φ(A)�

A) = ⊥X ∈ τ and uΦ =
∧
A∈τ (Φ(A)→ A) = >X ∈ τ .

(T2) Let Φ(Ai) = > for all {Ai | i ∈ Γ} ⊂ τ , otherwise
Φ(A) = ⊥. We have

tΦ =
∨
A∈τ

(Φ(A)�A) =
∨
i∈Γ

Ai ∈ τ

uΦ =
∧
A∈τ

(Φ(A)→ A) =
∧
i∈Γ

Ai ∈ τ.

(T3) Let Φ(A) = ⊥ for A = B ∈ τ , otherwise Φ(A) = α if
A 6= B. We have

tΦ =
∨
A∈τ

(Φ(A)�A) = α�B ∈ τ

uΦ =
∧
A∈τ

(Φ(A)→ A) = α→ B ∈ τ.

(2) Let A∗ ∈ τ∗ for A ∈ τ . Since α � A∗ = (α → A)∗

and α→ A∗ = (α�A)∗, τ∗ is an Alexandrov topology onX .

Theorem 2.2. Let τ be an Alexandrov topology on X . Define
Iτ : LX → LX as follows:

Iτ (A) =
∨
B∈τ

(eLX (B,A)�B).

Then the following properties hold.

(1) eLX (A,B) ≤ eLX (Iτ (A), Iτ (B)), for A,B ∈ LX .

(2) Iτ (A) ≤ A for all A ∈ LX .

(3) Iτ (Iτ (A)) = Iτ (A) for all A ∈ LX .

(4) Iτ (α→ A) = α→ Iτ (A) for all α ∈ L,A ∈ LX .

(5) Iτ (
∧
i∈ΓAi) =

∧
i∈Γ Iτ (Ai) for all Ai ∈ LX .

(6) Iτ (uΦ) = uI→τ (Φ) for each Φ : LX → L where I→τ :

LL
X → LL

X

defined as I→τ (Φ)(B) =
∨
Iτ (A)=B Φ(A).

(7) Iτ (A) =
∨
{B ∈ LX | B ≤ A,B ∈ τ}.

(8) Define τIτ = {A | A = Iτ (A)}. Then τ = τIτ .

(9) There exists a fuzzy preorder eX : X ×X → L such that

Iτ (A)(y) =
∧
x∈X

(eX(x, y)→ A(x)).

Proof. (1) By Lemma 1.2 (8,10,14), we have

eLX (Iτ (A), Iτ (B))

=
∧
x∈X(

∨
C∈τ (eLX (C,A)� C(x))

→
∨
D∈τ (eLX (D,B)�D(x))

≥
∧
x∈X

∧
C∈τ ((eLX (C,A)� C(x))

→ (eLX (C,B)� C(x))

≥
∧
C∈τ ((eLX (C,A)→ (eLX (C,B))

≥ eLX (A,B)

(2) Since eLX (C,A)�C ≤ A from Lemma 1.2 (9), Iτ (A) ≤
A.

(3) Since Iτ (A) ∈ τ , then

Iτ (Iτ (A)) ≥ eLX (Iτ (A), Iτ (A))� Iτ (A) = Iτ (A).

By (2), Iτ (Iτ (A)) = Iτ (A).

(4) Since α→ Iτ (A) ≤ α→ A and α→ Iτ (A) ∈ τ ,

Iτ (α→ A)

≥ eLX (α→ Iτ (A), α→ A)� (α→ Iτ (A))

= α→ Iτ (A)

Iτ (α→ A) =
∨
B∈τ (eLX (B,α→ A)�B)

=
∨
B∈τ ((α→ eLX (B,A))�B)

≤ α→
∨
B∈τ (eLX (B,A))�B) (by Lemma 1.2 (15))

= α→ Iτ (A).

(5) By (1), since Iτ (A) ≤ Iτ (B) forA ≤ B, Iτ (
∧
i∈ΓAi) ≤∧

i∈Γ Iτ (Ai). Since
∧
i∈Γ Iτ (Ai) ≤

∧
i∈ΓAi and

∧
i∈Γ Iτ (Ai)
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∈ τ , we have

Iτ (
∧
i∈ΓAi)

≥ eLX (
∧
i∈Γ Iτ (Ai),

∧
i∈ΓAi)�

∧
i∈Γ Iτ (Ai))

=
∧
i∈Γ Iτ (Ai).

(6) For each Φ : LX → L, put Q = uI→τ (Φ). Since
I→τ (Φ) : LX → L is a map, we have

uI→τ (Φ) =
∧

C∈LX
(I→τ (Φ)(C)→ C)

and Q = uI→τ (Φ) = Iτ (uΦ) from:

eLX (B,Q) =
∧
C∈LX (I→τ (Φ)(C)→ eLX (B,C)

= eLX (B,
∧
C∈LX (I→τ (Φ)(C)→ C))

= eLX (B,
∧
C∈LX (

∨
Iτ (A)=C Φ(A)→ C))

= eLX (B,
∧
A∈LX (Φ(A)→ Iτ (A)))

= eLX (B, Iτ (
∧
A∈LX (Φ(A)→ A))) (by (4) and (5))

= eLX (B, Iτ (uΦ)).

(7) Put I(A) =
∨
{B ∈ LX | B ≤ A,B ∈ τ}. Since

I(A) ≤ A and I(A) ∈ τ , we have
Iτ (A) =

∨
B∈τ (eLX (B,A)�B) ≥ eLX (I(A), A)�I(A) =

I(A).

Since Iτ (A) ≤ A and Iτ (A) ∈ τ , we have I(A) ≥ Iτ (A).
(8) It follows from A ∈ τ iff Iτ (A) = A iff A ∈ τIτ .
(9) SinceA =

∧
x∈X(A∗ → >∗x), by (4) and (5), Iτ (A)(y) =∧

x∈X(A∗ → Iτ (>∗x)(y)) =
∧
x∈X(I∗τ (>∗x)(y) → A(x)).

Put eX(x, y) = I∗τ (>∗x)(y). Then

Iτ (A)(y) =
∧
x∈X

(eX(x, y)→ A(x)).

eX(x, x) = I∗τ (>∗x)(x) ≥ >x(x) = >∨
y∈X(eX(x, y)� eX(y, z)) ≤ eX(x, z)

iff
∨
y∈X(I∗τ (>∗x)(y)� I∗τ (>∗y)(z)) ≤ I∗τ (>∗x)(z)

iff
∧
y∈X(I∗τ (>∗x)(y)→ Iτ (>∗y)(z)) ≥ Iτ (>∗x)(z)

iff Iτ (
∧
y∈X(I∗τ (>∗x)(y)→ >∗y))(z) ≥ Iτ (>∗x)(z)

iff Iτ (Iτ (>∗x))(z) ≥ I∗τ (>∗x)(z)

Hence eX is a fuzzy preorder.

Theorem 2.3. Let τ be an Alexandrov topology on X . Define
Cτ : LX → LX as follows:

Cτ (A) =
∧
B∈τ

(eLX (A,B)→ B).

Then the following properties hold.

(1) eLX (A,B) ≤ eLX (Cτ (A), Cτ (B)), for all A,B ∈ LX .

(2) A ≤ Cτ (A) for all A ∈ LX .

(3) Cτ (Cτ (A)) = Cτ (A) for all A ∈ LX .

(4) Cτ (α�A) = α� Cτ (A) for all α ∈ L,A ∈ LX .

(5) Cτ (
∨
i∈ΓAi) =

∨
i∈Γ Cτ (Ai) for all Ai ∈ LX .

(6) Cτ (tΦ) = tC→τ (Φ) for each Φ : LX → L where C→τ :

LL
X → LL

X

defined as C→τ (Φ)(B) =
∨
Cτ (A)=B(Φ(A)).

(7) Cτ (A) =
∧
{B ∈ LX | A ≤ B,B ∈ τ}.

(8) Define τCτ = {A | A = Cτ (A)}. Then τ = τCτ .

(9) (Cτ (A∗))∗ = Iτ∗(A) for all A ∈ LX .

(10) There exists a fuzzy preorder eX : X ×X → L such
that

Cτ (A)(y) =
∨
x∈X

(eX(x, y)�A(x)),

Iτ∗(A)(y) =
∧
x∈X

(eX(x, y)→ A(x)).

Proof. (1) By Lemma 1.2 (8,10), we have

eLX (Cτ (A), Cτ (B))

=
∧
x∈X(

∧
C∈τ (eLX (A,C)→ C(x))

→
∧
D∈τ (eLX (B,D)→ D(x))

≥
∧
x∈X

∧
C∈τ ((eLX (A,C)→ C(x))

→ (eLX (B,C)→ C(x))

≥
∧
C∈τ ((eLX (B,C)→ (eLX (A,C))

≥ eLX (A,B).

(2) Since eLX (A,B) � A ≤ B iff A ≤ eLX (A,B) → B ,
then A ≤ Cτ (A).

(3) Since Cτ (A) ∈ τ , then Cτ (Cτ (A)) ≤ eLX (Cτ (A), Cτ (A))

→ Cτ (A) = Cτ (A). By (2), Cτ (Cτ (A)) = Cτ (A).

(4) Since α�A ≤ α� Cτ (A) and α� Cτ (A) ∈ τ ,

Cτ (α�A) ≤ eLX (α�A,α� Cτ (A))→ α� Cτ (A)

= α� Cτ (A).

Cτ (α�A) =
∧
B∈τ (eLX (α�A,B)→ B)

=
∧
B∈τ ((α→ eLX (A,B))→ B)

≥
∧
B∈τ (α� (eLX (A,B)→ B))

(by Lemmma 1.2(15))
≥ α�

∧
B∈τ (eLX (A,B)→ B)

= α� Cτ (A).

(5) By (1), since Cτ (A) ≤ Cτ (B) for A ≤ B,
∨
i∈Γ Cτ (Ai)

≤ Cτ (
∨
i∈ΓAi). Since∨

i∈Γ

Ai ≤
∨
i∈Γ

Cτ (Ai)
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and ∨
i∈Γ

Cτ (Ai) ∈ τ,

we have

Cτ (
∨
i∈ΓAi)

≤ eLX (
∨
i∈ΓAi,

∨
i∈Γ Cτ (Ai))→

∨
i∈Γ Cτ (Ai)

=
∨
i∈Γ Cτ (Ai).

(6) For each Φ : LX → L, put P = uC→τ (Φ). Since
C→τ (Φ) : LX → L is a map, we have

tC→τ (Φ) =
∨
C∈τ

(C→τ (Φ)(C)� C)

and P = tC→τ (Φ) = Cτ (tΦ) from:

eLX (P,B) =
∧
C∈LX (C→τ (Φ)(C)→ eLX (C,B)

=
∧
C∈LX eLX (C→τ (Φ)(C)� C,B)

= eLX (
∨
C∈LX (C→τ (Φ)(C)� C), B)

= eLX (
∨
A∈LX (Φ(A)� Cτ (A)), B)

= eLX (Cτ (
∨
A∈LX (Φ(A)�A)), B) (by (4) and (5))

= eLX (Cτ (tΦ), B)

(7) Put C(A) =
∧
{B ∈ LX | A ≤ B,B ∈ τ}. Since

A ≤ C(A) and C(A) ∈ τ , we have

Cτ (A) =
∧
B∈τ (eLX (A,B)→ B)

≤ eLX (A,C(A))→ C(A) = C(A).

Since A ≤ Cτ (A) and Cτ (A) ∈ τ , we have C(A) ≤ Cτ (A).

(8) It follows from A ∈ τ iff Cτ (A) = A iff A ∈ τCτ .

(9) (Cτ (A∗))∗ = (
∧
B∈τ (eLX (A∗, B)→ B))∗

=
∨
B∈τ (eLX (B∗, A)�B∗)

=
∨
B∗∈τ∗(eLX (B∗, A)�B∗)

= Iτ∗(A).

(10) Since A =
∨
x∈X(A � >x), by (4) and (5), Cτ (A)(y)

=
∨
x∈X(A� Cτ (>x)(y)). Put eX(x, y) = Cτ (>x)(y). Then

Cτ (A)(y) =
∨
x∈X

(eX(x, y)�A(x)).

eX(x, x) = Cτ (>x)(x) ≥ >x(x) = >∨
y∈X(eX(x, y)� eX(y, z)) ≤ eX(x, z)

iff
∨
y∈X(Cτ (>x)(y)� Cτ (>y)(z)) ≤ Cτ (>x)(z)

iff Cτ (
∨
y∈X(Cτ (>x)(y)�>y))(z) ≤ Cτ (>x)(z)

iff Cτ (Cτ (>x))(z) ≤ Cτ (>x)(z)

Hence eX is a fuzzy preorder. Since eX(x, y) = Cτ (>x)(y) =

I∗τ∗(>∗x)(y), by Theorem 2.2(9),

Iτ∗(A)(y) =
∧
x∈X

(eX(x, y)→ A(x)).

Example 2.4. Let (L = [0, 1],�,→,∗ ) be a complete residu-
ated lattice with a negation defined by

x�y = (x+y−1)∨0, x→ y = (1−x+y)∧1, x∗ = 1−x.

Let X = {x, y, z} be a set and A1 = (1, 0.8, 0.6), A2 =

(0.7, 1, 0.7), A3 = (0.5, 0.7, 1).
(1) We define

τ = {∨3
i=1(ai �Ai) | A = (a1, a2, a3) ∈ LX}

= {eX(A)(y) =
∨
x∈X(eX(x, y)�A(x)) | A ∈ LX}

where

eX =

 1 0.8 0.6

0.7 1 0.7

0.5 0.7 1

 .

(T1) For ⊥X ∈ LX , eX(⊥X) = ⊥X ∈ τ . For >X ∈ LX ,
eX(>X) = >X ∈ τ .

(T2) For eX(Ai) ∈ τ for each i ∈ Γ,
∨
i∈Γ eX(Ai) =

eX(
∨
i∈ΓAi) ∈ τ . Moreover, since eX(A)(x) ≥ eX(x, x) �

A(x) = A(x) and eX(eX(A)) = eX(A),∧
i∈Γ

eX(Ai) ≤ eX(
∧
i∈Γ

eX(Ai)) ≤
∧
i∈Γ

eX(eX(Ai)).

Hence
∧
i∈Γ eX(Ai) = eX(

∧
i∈ΓAi) ∈ τ .

(T3) For eX(A) ∈ τ , α� eX(A) = eX(α�A) ∈ τ .
(T4) Since α � eX(α → eX(A)) ≤ eX(eX(A)) = eX(A),

we have

α→ eX(A) ≤ eX(α→ eX(A)) ≤ α→ eX(A)

Hence, for eX(A) ∈ τ , α → eX(A) = eX(α → eX(A)) ∈ τ .
Hence τ is an Alexandrov topology on X .

(2) For B1 = (0.7, 0.3, 0.6), B1 = (0.5, 0.9, 0.3), we obtain

Iτ (B1) = (0.5, 0.3, 0.6), Iτ (B2) = (0.5, 0.6, 0.3),

Cτ (B1) = (0.7, 0.5, 0.6), Cτ (B2) = (0.6, 0.9, 0.6).

Let Φ : LX → L as follows

Φ(B) =


0.9, if B = B1,

0.8, if B = B2,

0, otherwise.
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uΦ =
∧
A∈LX (Φ(A)→ A)

= (Φ(B1)→ B1) ∧ (Φ(B2)→ B2)

= (0.9→ (0.7, 0.3, 0.6)) ∧ (0.8→ (0.5, 0.9, 0.3))

= (0.7, 0.4, 0.5)

uI→τ (Φ) =
∧
A∈LX (Φ(A)→ Iτ (A))

= (Φ(B1)→ Iτ (B1)) ∧ (Φ(B2)→ Iτ (B2))

= (0.9→ (0.5, 0.3, 0.6)) ∧ (0.8→ (0.5, 0.6, 0.3))

= (0.6, 0.4, 0.5)

Thus, I(uΦ) = uI→τ (Φ).

tΦ =
∨
A∈LX (Φ(A)�A)

= (Φ(B1)�B1) ∨ (Φ(B2)�B2)

= (0.9� (0.7, 0.3, 0.6)) ∨ (0.8� (0.5, 0.9, 0.3))

= (0.6, 0.7, 0.5)

tC→τ (Φ) =
∨
A∈LX (Φ(A)� Cτ (A))

= (Φ(B1)� Cτ (B1)) ∨ (Φ(B2)� Cτ (B2))

= (0.9� (0.7, 0.5, 0.6)) ∨ (0.8� (0.6, 0.9, 0.6))

= (0.6, 0.7, 0.5)

Thus, Cτ (tΦ) = tC→τ (Φ).

(3) We define

τ∗ = {∧3
i=1(ai → A∗i ) | A = (a1, a2, a3) ∈ LX}

= {
∧
y∈X(A(y)→ e∗X(−, y)) | A ∈ LX}

= {
∧
y∈X(eX(−, y)→ B(y)) | B ∈ LX}.

For B1, B2 and Φ in (2), we obtain

Iτ∗(B1) = C∗τ (B∗1) = (0.6, 0.3, 0.6),

Iτ∗(B2) = C∗τ (B∗2) = (0.5, 0.6, 0.3),

Cτ∗(B1) = (0.7, 0.4, 0.6), Cτ∗(B2) = (0.7, 0.9, 0.6).

Since uΦ = (0.7, 0.4, 0.5) and

uI→τ∗(Φ) =
∧
A∈LX (Φ(A)→ Iτ∗(A))

= (Φ(B1)→ Iτ∗(B1)) ∧ (Φ(B2)→ Iτ∗(B2))

= (0.9→ (0.6, 0.3, 0.6)) ∧ (0.8→ (0.5, 0.6, 0.3))

= (0.7, 0.4, 0.5)

we have Iτ∗(uΦ) = uI→τ∗(Φ).

Since tΦ = (0.6, 0.7, 0.5) and

tC→τ∗(Φ) =
∨
A∈LX (Φ(A)� Cτ∗(A))

= (Φ(B1)� Cτ∗(B1)) ∨ (Φ(B2)� Cτ∗(B2))

= (0.9� (0.7, 0.4, 0.6)) ∨ (0.8� (0.7, 0.9, 0.6))

= (0.6, 0.7, 0.5),

then Cτ∗(tΦ) = tC→τ∗(Φ).

3. Conclusions

The fuzzy complete lattice is defined with join and meet opera-
tors on fuzzy partially ordered sets. Alexandrov topologies are
the extensions of fuzzy topology and strong topology.

Several properties of join and meet operators induced by
Alexandrov topologies in complete residuated lattices have
been elicited and proved. In addition, with the concepts of
Zhang’s completeness, some extensions of interior and closure
operators are investigated in the sense of Pawlak’s rough set
theory on complete residuated lattices. It is expected to find
some interesting functorial relationships between Alexandrov
topologies and two operators.
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