DOI QR코드

DOI QR Code

비진공법 CuInSe2 태양전지에서 MoSe2의 생성을 억제하기 위한 산화 몰리브데늄 확산장벽 층

Molybdenum Oxides as Diffusion Barrier Layers against MoSe2 Formation in A Nonvacuum Process for CuInSe2 Solar Cells

  • 이병석 (한국과학기술연구원, 광전하이브리드연구센터) ;
  • 이도권 (한국과학기술연구원, 광전하이브리드연구센터)
  • Lee, Byung-Seok (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Doh-Kwon (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST))
  • 투고 : 2015.08.10
  • 심사 : 2015.08.24
  • 발행 : 2015.09.30

초록

Two-step processes for preparing $Cu(In,Ga)Se_2$ absorber layers consist of precursor layer formation and subsequent annealing in a Se-containing atmosphere. Among the various deposition methods for precursor layer, the nonvacuum (wet) processes have been spotlighted as alternatives to vacuum-based methods due to their potential to realize low-cost, scalable PV devices. However, due to its porous nature, the precursor layer deposited on Mo substrate by nonvacuum methods often suffers from thick $MoSe_2$ formation during selenization under a high Se vapor pressure. On the contrary, selenization under a low Se pressure to avoid $MoSe_2$ formation typically leads to low crystal quality of absorber films. Although TiN has been reported as a diffusion barrier against Se, the additional sputtering to deposit TiN layer may induce the complexity of fabrication process and nullify the advantages of nonvacuum deposition of absorber film. In this work, Mo oxide layers via thermal oxidation of Mo substrate have been explored as an alternative diffusion barrier. The morphology and phase evolution was examined as a function of oxidation temperature. The resulting Mo/Mo oxides double layers were employed as a back contact electrode for $CuInSe_2$ solar cells and were found to effectively suppress the formation of $MoSe_2$ layer.

키워드

참고문헌

  1. Shin, B., Zhu, Y., Bojarczuk, N. A., Chey, S. J., and Guha, S., "Control of an interfacial $MoSe_2$ layer in $Cu_2ZnSnSe_4$ thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier", Appl. Phys. Lett., Vol. 101, No. 5, pp. 053903-1-053903-4, 2012. https://doi.org/10.1063/1.4740276
  2. Green, M. A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E. D., "Solar cell efficiency tables (Version 45)", Prog. Photovolt: Res. Appl., Vol. 23, No. 1, pp. 1-9, 2015. https://doi.org/10.1002/pip.2573
  3. Jackson, P., Hariskos, D., Kiowski, O., Bauer, A., Friedlmeier, T. M., and Powalla, M., "Properties of $Cu(In,Ga)Se_2$ solar cells with new record efficiencies up to 21.7%", Phys. Status Solidi RRL, Vol. 9, No. 1, pp. 28-31, 2015. https://doi.org/10.1002/pssr.201409520
  4. del Cueto, J. A., Rummel, S., Kroposki, B., Osterwald, C., Anderberg, A., "Stability of CIS/CIGS modules at the outdoor test facility over two decades", Photovoltaic Specialists Conference, 33rd IEEE, 2008.
  5. Repins, I., Contreras, M. A., DeHart, C., Scharf, J., Perkins, C. L., To, B., and Noufi, R., "19.9%-efficient $ZnO/CdS/CuInGaSe_2$ Solar Cell with 81.2% Fill Factor", Prog. Photovolt: Res. Appl., Vol. 16, No. 3, pp. 235-239, 2008. https://doi.org/10.1002/pip.822
  6. Chirila, A., Reinhard, P., Pianezzi, F., Bloesch, P., Uhl, A. R., Fella, C., Kranz, L., Keller, D., Gretener, C., Hagendorfer, H., Jaeger, D., Erni, R., Nishiwaki, S., Buecheler, S., and Tiwari, A. N., "Potassium-induced surface modification of $Cu(In,Ga)Se_2$ thin films for high-efficiency solar cells", Nat. Mater., Vol. 12, pp. 1107-1111, 2013. https://doi.org/10.1038/nmat3789
  7. Li, W., Sun, Y., Liu, W., and Zhou, L., "Fabrication of $Cu(In,Ga)Se_2$ thin films solar cell by selenization process with Se vapor", Sol. Energy, Vol. 80, No. 2, pp. 191-195, 2006. https://doi.org/10.1016/j.solener.2005.07.011
  8. Hibberd, C. J., Chassaing, E., Liu, W., Mitzi, D. B., Lincot D., and Tiwari, A. N., "Non-vacuum methods for formation of $Cu(In,Ga)(Se,S)_2$ thin film photovoltaic absorbers", Prog. Photovoltaics, Vol. 18, No. 6, pp. 434-452, 2010. https://doi.org/10.1002/pip.914
  9. Romanyuk, Y. E., Hagendorfer, H., Stucheli, P., Fuchs, P., Uhl, A. R., Sutter-Fella, C. M., Werner, M., Haass, S., Stuckelberger, J., Broussillou, C., Grand, P.-P., Bermudez V., and Tiwari, A. N., "All solution-processed chalcogenide solar cells - from single functional layers towards a 13.8% efficient CIGS device", Adv. Funct. Mater., Vol. 25, No. 1, pp. 12-27, 2015. https://doi.org/10.1002/adfm.201402288
  10. Hsiao, K.-J., Liu, J.-D., Hsieh, H.-H., and Jiang, T.-S., "Electrical impact of Mo$Se_2$ on CIGS thin-film solar cells", Phys. Chem. Chem. Phys., Vol. 15, No. 41, pp. 18174-18178, 2013. https://doi.org/10.1039/c3cp53310g
  11. Shin, B., Bojarczuk, N. A., and Guha, S., "On the kinetics of $MoSe_2$ interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact", Appl. Phys. Lett., Vol. 102, No. 9, pp.091907-1-091907-4, 2013. https://doi.org/10.1063/1.4794422
  12. Lim, Y. S., Jeong, J., Kim, J. Y., Ko, M. J., Kim, B., Jeong, U., and Lee, D.-K., "Binger-Free Cu-In Alloy Nanoparticles Precursor and Their Phase Transformation to Chalcogenides for Solar Cell Applications", J. Phys. Chem. C, Vol. 117, No. 23, pp. 11930-11940, 2013. https://doi.org/10.1021/jp401637b
  13. Brooks, L. S., "The Vapor Pressures of Telluirum and Selenium", J. Am. Chem. Soc., Vol. 74, No. 1, pp. 227-229, 1952. https://doi.org/10.1021/ja01121a059