DOI QR코드

DOI QR Code

Sulfurization 온도와 Cu/(In+Ga) 비가 Cu(In,Ga)Se2 박막 내 S 함량에 미치는 영향

Effects of sulfurization temperature and Cu/(In+Ga) ratio on Sulfur content in Cu(In,Ga)Se2 thin films

  • 고영민 (한국과학기술원 신소재공학과) ;
  • 김지혜 (한국과학기술원 신소재공학과) ;
  • 신영민 (한국과학기술원 신소재공학과) ;
  • ;
  • 안병태 (한국과학기술원 신소재공학과)
  • Ko, Young Min (Department of Materials Science and Engineering, KAIST) ;
  • Kim, Ji Hye (Department of Materials Science and Engineering, KAIST) ;
  • Shin, Young Min (Department of Materials Science and Engineering, KAIST) ;
  • Chalapathy, R.B.V. (Department of Materials Science and Engineering, KAIST) ;
  • Ahn, Byung Tae (Department of Materials Science and Engineering, KAIST)
  • 투고 : 2015.02.23
  • 심사 : 2015.03.03
  • 발행 : 2015.03.31

초록

It is known that sulfide at the $Cu(In,Ga)Se_2$ ($CIGSe_2$) surface plays a positive role in $CIGSe_2$ solar cells. We investigated the substitution of S with Se on the $CIGSe_2$ surface in S atmosphere. We observed that the sulfur content in the $CIGSe_2$ films changed according to sulfurization temperature and Cu/(In+Ga) ratio. The sulfur content in the $CIGSe_2$ films increased with increasing the annealing temperature and Cu/(In+Ga) ratio. Also Cu migration toward the surface increased at higher temperature. Since high Cu concentration at the $CIGSe_2$ surface is detrimental role, it is necessary to reduce the S annealing temperature as low as $200^{\circ}C$. The cell performance was improved at $200^{\circ}C$ sulfurization.

키워드

참고문헌

  1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, "Solar cell efficiency table", Prog. Photovoltaics, Vol. 23, No. 1, pp. 1-9 (2015). https://doi.org/10.1002/pip.2573
  2. U. Rau, M. Schmitt, D. Hillburger, F. Engelhardt, O. Seifert, W. Riedl, J. Rimmasch, J. Parisi and F. Karg, "Influence of Na and S incorporation on the electronic transport properties of Cu(In,Ga)$Se_2$ solar cell", Proc. 25th IEEE Photovoltaic Specialist Conf, Washington, IEEE, pp. 1005-1008 (1996).
  3. K. Kushiya, "Key near-term R&D issues for continuous improvement in CIS-based thin-film PV modules", Sol. Energ. Mat. Sol. Cells., Vol. 93, No. 6-7, pp. 1037-1041 (2009). https://doi.org/10.1016/j.solmat.2008.11.063
  4. D. Ohashi, T. Nakada and A. Kunioka, "Improved CIGS thin-film solar cells by surface sulfurization using In2S3 and sulfur vapor", Sol. Energ. Mat. Sol. Cells., Vol. 67, No. 1-4, pp. 261-265, 2001. https://doi.org/10.1016/S0927-0248(00)00290-7
  5. T. Nakada, H. Ohbo, T. Watanabe, H. Nakazawa, M. Matsui and A. Kunioka, "Improved $Cu(In,Ga)(S,Se)_2$ thin film solar cells by surface sulfurization", Sol. Energ. Mat. Sol. Cells., Vol. 49, No. 1-4, pp. 285-290 (1997). https://doi.org/10.1016/S0927-0248(97)00054-8
  6. H. N. R. Shin, Y. M. Shin, J. H. Kim, J. H. Yun, B. K. Park and B. T. Ahn, "Low-temperature Deposition of $Cu(In,Ga)(S,Se)_2$ Absorber using $Na_2S$ Underlayer", Current Photovoltaic Research, Vol. 2, No. 1, pp. 28-35 (2014). https://doi.org/10.21218/CPR.2014.2.1.028
  7. X. Fontane, V. Izquierdo-Rosa, L. Calvo-Barrio, J. Alvarez-Garcia, A. Perez-Rodriguez, J. R. Morante and W. Witte, "In-depth resolved Raman scattering analysis of secondary phases in Cu-poor $CuInSe_2$ based thin films", Appl. Phys. Lett., Vol. 95, pp. 121907 (2009). https://doi.org/10.1063/1.3236770
  8. Y. M. Shin, C. S. Lee, D. H. Shin, H. S. Kwon, B. G. Park and B. T. Ahn, "Surface modification of CIGS film by annealing and its effect on the band structure and photovoltaic properties of CIGS solar cells", Curr. Appl. Phys., Vol. 15, pp. 18-24 (2015). https://doi.org/10.1016/j.cap.2014.09.023