
복귀주소 스택을 활용한 얕은 파이프라인 EISC 아키텍처의 명령어 큐 효율성 향상연구 71

복귀주소 스택을 활용한 얕은 파이프라인

EISC 아키텍처의 명령어 큐 효율성 향상연구

김한이† ․ 이승은†† ․ 김 ††† ․ 서태원††††

요 　 약

EISC 로세서에서 LERI 폴딩과 루 버퍼링을 지원하는 명령어 큐는 하드웨어 으로 20%를 차지

하며, 그 효율성은 성능에 직결된다. 본 연구에서는 EISC 로세서의 명령어 큐 아키텍처 효율성 향상

을 복귀주소 스택(RAS)을 통해 실 하 다. 구 한 아키텍처는 EISC의 얕은 이 라인 구조의 이 을

활용하여 잘못된 명령어 수행으로 인한 RAS Corruption 문제를 제거하 다. 실험에서, 4개 엔트리의

RAS는 명령어 큐의 러시를 기존보다 최 58.90% 고, 8개 엔트리의 RAS는 이를 최 61.28%

다. 한 실험 결과 8개 엔트리의 RAS는 3.47%의 성능향상을 보여주었고, 4개 엔트리의 RAS는

3.15%의 성능향상을 보여주었다.

주제어 : EISC, 명령어 큐, 복귀주소 스택, 분기 측기, 마이크로아키텍처

Enhancing Instruction Queue Efficiency with Return

Address Stack in Shallow-Pipelined EISC Architecture

Han-Yee Kim†․SeungEun Lee††․Kwan-Young Kim†††․Taeweon Suh††††

ABSTRACT

In the EISC processor, the Instruction Queue (IQ) supporting LERI folding and loop buffering

occupies roughly 20% of real estate, and its efficient utilization is a key for performance. This paper

presents an architectural enhancement for the IQ utilization with return address stack (RAS) in the

EISC processor. The proposed architecture eliminates the RAS corruption from the wrong-path,

taking advantage of shallow pipeline. In experiments, a 4-entry RAS reduces the number of IQ

flushes by up to 58.90% over baseline, and an 8-entry RAS by up to 61.28%. The experiments

show up to 3.47% performance improvement with 8-entry RAS and up to 3.15% performance

improvement with 4-entry RAS.

Keywords : EISC, Instruction Queue, Return Address Stack, Branch Predictor,

Microarchitecture

 †정 회 원: 고려 학교 컴퓨터교육학과 석박통합과정
 ††정 회 원: 서울과학기술 학교 자공학과 교수
 †††정 회 원: 에이디칩스 상무이사
††††종신회원: 고려 학교 컴퓨터교육과 교수(교신 자)
 논문 수: 2014년 12월 10일, 심사완료: 2015년 1월 24일, 게재확정: 2015년 3월 9일
 * 본 논문은 2015년 정부(교육과학기수부)의 재원으로 한국연구재단의 기 연구사업 지원을 받아 수행되었음
 (NRF-2014R1A1A2059652)

72 한국컴퓨터교육학회 논문지 제18권 제2호(2015.3)

1. Introduction

In modern high-performance computers, the

instruction queue (IQ) is typically employed to

bridge the latency difference between CPU core

and cache, and feeds the CPU with proper

instructions. For example, Nehalem [1] is able

to store up to 18 instructions in IQ to mitigate

the impact of the 3-cycle latency of L1

instruction cache. Thus, for the CPU

performance, it is crucial to place proper

instructions in IQ, and it is closely related to

the hit rate of branch predictors. The higher

the hit rate is, the CPU is better serviced with

the instruction stream.

The branch predictors [2-4] are commonly

incorporated in commercial CPUs ranging from

embedded processors to server processors [1,

5-7]. For example, ARM1136 [6] has a 3-entry

return address stack (RAS) and a 128-entry

BTB. Power3 [5] has a 8-entry RAS and a

256-entry BTB. The branch predictor especially

plays a key role for performance in the

deep-pipelined processors, where the control

hazard incurs a considerable number of cycle

loss. In addition, in superscalar processors such

as x86, multiple instructions are executed

simultaneously. Considering that roughly 20%

of the instructions in programs are branches

[8], the importance of branch predictor cannot

be over-emphasized. For the low-cost

embedded processors with shallow pipeline

stages, the role of branch predictor has been

overlooked since the control hazard incurs only

a few cycle penalty, and the hardware overhead

of the branch predictor could be an overkill.

Thus, there are few studies quantifying its

impact on performance.

In this paper, we have used a commercial

embedded processor, a 5-stage pipelined

Extendable Instruction Set Computer (EISC)

processor from Adchips [9] and enhanced the

IQ efficiency and performance with RAS.

Unlike the previous work, the proposed scheme

completely removes the RAS corruption from

the wrong-path prediction, taking advantage of

the shallow pipeline. According to experiment

results, the proposed RAS has a significant

impact on IQ efficiency and performance. The

experiments show that the number of IQ

flushes can be reduced to as low as 38.72%,

compared to the baseline, boosting the

application performance by as high as 3.47%.

Unlike the previous studies, we have used the

actual RTL code for the experiments.

The rest of the paper is organized as follows.

Section 2 summarizes the related work. Section

3 explains the IQ organization and its role in

the EISC processor. Section 4 discloses the

detailed design of the proposed RAS and its

operation with IQ. Section 5 presents the

experiment results and its analysis. Finally,

Section 6 concludes our paper.

2. Related work

There are few studies or reports quantifying

the IQ efficiency with branch prediction. Most

of studies simply measured performance and/or

power consumption of branch predictors

assuming superscalar processors with wide

issue widths. In addition, unlike our study,

most of researches conducted with software

simulators, without actual implementation of

RTL code.

Parith [10] utilized SimpleScalar and Wattch

with an out-of-order CPU configuration to

investigate the power consumption problem

with branch predictor. The study concludes that

it is worth spending more power in branch

predictor if it results in more accurate

prediction that improves execution time. Das

[11] investigated the impact of faulty branch

predictor on power consumption. The study

복귀주소 스택을 활용한 얕은 파이프라인 EISC 아키텍처의 명령어 큐 효율성 향상연구 73

reveals that the design inaccuracy could lead to

a huge power loss (up to 95% additional

power). Thus, fault-tolerant predictor design is

essential for chip multiprocessors.

Works on Return Address Stack (RAS) were

first performed by Webb [12] and Kaeli [13].

Jordan [14] proposed a checkpointed RAS that

provides a recovery mechanism in case RAS is

corrupted from the wrong-path instructions.

The proposed RAS scheme provides a link to

the next element such as the linked list in data

structure. Skadron [15] proposed an

cost-effective RAS with a recovery mechanism,

which stores the RAS pointer and data (i.e.,

return address) whenever the processor

speculates past a branch. The RAS pointer and

data are stored along with the register-rename

map, which is already implemented in

superscalar processors. More recently, Wang

[16] proposed another RAS structure referred to

as self-aligning RAS (SARAS). SARAS has an

aligning queue where the popped entry from

RAS is recorded along with its index. The

popped entries are recovered from the aligning

queue to the RAS upon the detection of

wrong-path execution. Vandierendonck [17]

proposed a low-cost corruption detector for

RAS (CT-RAS), which adds a corruption bit in

every entry of RAS and includes a separate

table called CheckTOS. If the corruption bit is

set in RAS, it indicates that the corresponding

entry is overwritten via a wrong-path call. The

experiments show that CT-RAS provides a

superior performance to the checkpointed RAS

when the number of entries in RAS is less

than 32.

Table 1 summarizes the hardware details of

commercial processors. ARM1136 [6] and

ARM1156 [7] have a 3-entry RAS with 3-cycle

miss penalty with 8 and 9 pipelines,

respectively. Power3 [5] has an 8-entry RAS

with 3-cycle miss penalty with variable

pipelines depending on integer or floating-point

processing. Commercial embedded processors [6]

[7] rarely disclose the microarchitectural details

such as IQ due in part to confidentiality. To

the best of our knowledge, the performance

impact of RAS in terms of IQ on [6] [7] has

not been published.

Processors ARM1136 [6] ARM1156 [7] Power3 [5]

Pipeline stages 8 9 7 ~ 10

RAS entries 3 3 8

Miss penalty 5 cycle 7 cycle 3 cycle

<Table 1> RAS and Miss Penalty in Commercial
Processors

3. Instruction Queue in EISC

Processor

EISC is a 32-bit architecture with 16-bit

instruction set for embedded systems. With the

16-bit instructions, it improves the code density

compared to 32-bit instruction set architecture.

One of the key features in the EISC

microarchitecture (referred to as Lucida

hereafter) is that it provides a capability of

creating 32-bit immediate with 16-bit

instructions without accessing memory. It is

achieved through the consecutive instructions

called LERI that store parts of 32-bit

immediate. In Lucida, hardware formulates the

32-bit immediate with the LERI folding [18]

logic in the fetch stage. Then, the immediate is

passed through to subsequent pipeline stages.

Lucida has a generic 5-stage pipeline

composed of Fetch, Decode, Execution, Memory

Access and Writeback. It incorporates the

8-entry IQ in the Fetch stage. Fig. 1 shows

the schematic diagram of IQ. The IQ stores

instructions from instruction cache where 2

instructions are brought to the CPU core at a

time. Before buffering instructions to IQ, the

LERI folding logic detects and combines the

74 한국컴퓨터교육학회 논문지 제18권 제2호(2015.3)

consecutive LERI instructions to create 32-bit

immediate. Each entry in IQ stores not only an

instruction, but also 32-bit immediate, flags,

and program counter for precise interrupt

support. Thus, the LERI instruction itself does

not occupy an entry in IQ.

Lucida

IF Stage

I$

PC Instruction ER Miscellaneous

ID Stage

Write

Pointer ?

? Read
Pointer

IQ

…

<Fig. 1> Instruction Queue in Lucida

Another important role of IQ is for providing

the loop buffering mechanism. It is similar to

the Loop Stream Detection (LSD) in x86. In

case of Nehalem [1], LSD is activated if ?ops

in a loop is within 28 slots. In Lucida, the loop

buffering is activated if the number of

instructions in a loop is equal to or less than 8

instructions without counting the LERI

instructions in the loop. The loop buffering

provides a significant performance and power

advantage since instructions are directly

supplied from the IQ while executing the loop

without accessing instruction cache.

To determine the loop, Lucida incorporates a

simple branch predictor which has only 4-entry

branch target buffer (BTB) in a fully

associative configuration with the pseudo LRU

replacement. If a branch instruction hits one of

BTB in the Fetch stage and the branch

destination is within 8 instructions away, the

loop buffering is activated. In Lucida, the

branch is resolved in the Decode stage. In case

of mis-prediction, the corresponding entry in

BTB is invalidated and the correct destination

is recorded. In addition, IQ is flushed since it

was buffering wrong-path instructions from the

branch destination.

Branch Instructions in EISC Branch Predictor

JMP (Jump)

JNV (Jump on overflow clear)

JV (Jump on overflow set)

JP (Jump on sign clear)

JN (Jump on sign set)

JNZ (Jump on non-zero)

JZ (Jump on zero)

JNC (Jump carry clear)

JC (Jump carry set)

JGT (Jump signed greater)

JLT (Jump signed less)

JGE (Jump signed greater or

equal)

JLE (Jump signed less or equal)

JHI (Jump unsigned higher)

JLS (Jump unsigned lower or

equal)

BTB

JAL (Jump and link): LR ←

PC+2
BTB, RAS Push

JPLR (Jump link register): PC

← LR

POP PC: PC ← popped entry

from stack

RAS Pop

JR (Jump register indirect): PC

← %RS

JALR (Jump register indirect and

link): LR ← PC+2,

PC ← %RS

None

<Table 2> Branch Instruction in EISC and Branch
Predictor

Table 2 summarizes the branch instructions

in EISC. Among them, the branch predictor in

the original Lucida handles direct branch

instructions, whereas the destination of the

return instructions (JPLR and POP PC) is not

predicted in BTB, resulting in control hazard.

The control hazard in Lucida pipeline incurs at

least a 1-cycle loss in the pipeline; The long

cache access latency or memory access in case

of a cache miss incurs additional penalty. As

mentioned, mis-prediction and consequent

control hazard incurs the IQ flush. The IQ

flush adversely affects the performance and

power consumption since the IQ should newly

be filled from cache and the additional cache

accesses consume power. Thus, it is essential

복귀주소 스택을 활용한 얕은 파이프라인 EISC 아키텍처의 명령어 큐 효율성 향상연구 75

to reduce the number of IQ flushes as long as

the new hardware investment does not overkill

its benefits.

When ported to a Virtex-6 FPGA, the IQ in

Lucida requires 20.29% of registers and 14.79%

of LUTs out of the total hardware

consumption. Considering that Lucida is used in

embedded systems, the hardware cost of IQ is

significant and its efficient utilization is a key

issue for performance.

4. IQ and RAS in Lucida

Branch Target Buffer

PC

Return
Prediction

RAS[TOS+ offset]

+

4
TargetTag TargetTag TargetTag TargetTag

=

RAS

offset
↑
0
↓

TOS

Return
Commit

…

<Fig. 2> BTB and RAS in Lucida

Fig. 2 shows the schematic diagram of the

branch predictors in Lucida. As mentioned, the

BTB is incorporated in the original Lucida. The

RAS was newly designed for the study to

support the prediction for the return

instructions. The number of evaluated entries in

RAS is 4 or 8. It was chosen not to invest too

much hardware because Lucida is a processor

used in embedded systems.

4.1 Basic Operation of RAS in Lucida

The RAS in Lucida is essentially a circular

buffer, which is indexed by top-of-stack

(TOS). Fig. 3 demonstrates the timing diagram

of the RAS push and pop operations. The

previous work [15] [16] assumes that TOS is

updated in the Fetch stage and the branch is

resolved in writeback stage. Thus, it introduces

the risk of RAS corruption from the

wrong-path instructions upon branch

misprediction. In Lucida, TOS is updated at the

Decode stage. It completely eliminates the RAS

corruption if not overflowed, because the branch

is resolved in the Decode stage. The prediction

for the return instructions occurs in the Fetch

stage when filling up IQ, as depicted in Fig. 3.

To handle the TOS skew between prediction

and RAS update, an additional pointer called

offset is used to adjust TOS so that the right

position in RAS is accessed for prediction. The

detailed operation of offset is explained in the

following section with an example.

RAS Predict

RAS Pop

…

jal loop

…

loop: ?

jplr

F D E M W

F D E M W

RAS Push

Clock

TOS change

TOS++ TOS--
RAS Hit

①

②

F D E M W

<Fig. 3> Pipeline Timing Diagram of push and
pop in Lucida RAS

TOS and offset are initialized to zero at

reset. TOS is incremented by 1 after pushing

the return address to an entry in RAS when a

subroutine call instruction is detected. TOS is

decremented by 1 after the return instruction is

detected in the Decode stage. TOS wraps

around to the beginning when it reaches to the

top of RAS.

4.2 IO and RAS Detailed Operation

The impact of RAS on the IQ efficiency and

performance can be well explained with an

example. In Lucida, all the instructions in a

76 한국컴퓨터교육학회 논문지 제18권 제2호(2015.3)

F - - - D E M W

F D E M W
F D - E M W

F D E M W

main: …
jal funcA
…

funcA: …
jal funcB
…
pop %pc

funcB: …
jplr

①

②

④

③

…

(funcA)

jal

…

(main)

① IQ Flush

…

(funcB)

jal

…

(funcA)

② IQ Flush

(main)

pop %pc

(funcA)

jplr

(funcB)

④ RAS Hit

③ RAS Hit

↑grow

@funcA ②,③

@main ①,④

…

←TOS

IQ

↑grow

RAS

Time

F D E M W

F D E M W
F D - E M W

F D E M W

main: …
jal funcA
…

funcA: …
jal funcB
…
pop %pc

funcB: …
jplr

①

②

④

③

…

(funcA)

jal

…

(main)

① IQ Flush

…

(funcB)

jal

…

(funcA)

② IQ Flush

…

(funcA)

jplr

…

(funcB)

③ IQ Flush

↑grow

IQ

…

(main)

pop %pc

…

(funcA)

④ IQ Flush

Time

(a) Nested Procedure Call without RAS (b) Nested Procedure Call with RAS
<Fig. 5>

program go through IQ to the subsequent

stages for execution. Fig. 4 shows two C-code

examples where RAS can be well utilized. Fig.

4 (a) is a recursive call to compute factorials

where the return instructions are executed

almost consecutively. Fig. 4 (b) is a nested

function call where the return instructions are

used to return to the callers.

int factorial(int n) {
if (n <= 1)
return 1;

else
return (n * factorial(n-1));

}

main() {
...
funcA
...
return 0;

}

funcA() {
...
funcB();
...
return 0;

}
funcB() {

...
return 0;

}

 (a) Recursive Procedure Call (b) Nested Procedure Call
<Fig. 4>

Fig. 5 shows the IQ and RAS status without

and with RAS for comparison, as Lucida runs

the instructions compiled for the code of Fig. 4

(b). Fig. 5 (a) illustrates the detailed operations

of the Lucida without RAS, and Fig. 5 (b)

demonstrates the enhanced version with RAS.

The jal instructions (① and ②) are used for

calling functions (funcA and funcB). The jplr

instruction (③) is used to return to funcA,

which triggers the control hazard. The pop pc

instruction (④) is used to return to main. The

pop pc loads from memory to the PC register,

and it occurs in the Memory Access stage. In

Lucida, the pop pc instruction stalls the pipeline

because the subsequent instructions would be

nullified anyway. In case of Fig. 5 (a), the first

jal (①) incurs an IQ flush, which is inevitable

since it changes the instruction flow with a

BTB miss (first call). The second jal (②)

incurs another IQ flush as well for the same

reason. The destination of the first return

instruction (jplr (③)) is fetched after the

Decode stage due to the control hazard. The

destination of the second return instruction (pop

pc (④)) is fetched after the Memory Access

stage due to the control hazard. The return

instructions (jplr (③) and pop pc (④)) also

flushes IQ due to the changes in instruction

flow and the lack of the prediction logic.

On the other hand, in case of Fig. 5 (b), two

RAS hits prevent the last two IQ Flushes in

Fig. 5 (a). The first jal (①) incurs a push of

the return address in main to RAS in the

Decode stage and flushes IQ. The second jal

(②) also incurs a push of the return address in

funcA to RAS with another IQ flush. At this

point, the RAS status is shown in Fig. 5 (b)

where TOS points to the return address to

funcA. When the first return instruction (jplr)

is filled up in IQ, RAS makes a prediction (③:

복귀주소 스택을 활용한 얕은 파이프라인 EISC 아키텍처의 명령어 큐 효율성 향상연구 77

RAS Hit). However, TOS is not decremented

since the jplr is not in the Decode stage yet

(jplr is still in IQ). Note that TOS is updated

in the Decode stage. To account for the skew,

the offset is decremented by 1. Thus, offset

becomes -1 at this point in time. Following the

RAS prediction, IQ is continuously filled with

the instructions after the funcB call in funcA.

Assume that the next return instruction (pop

pc) is just a few instructions away from the

first one (jplr). When pop pc (④) is inserted in

IQ, the RAS makes another prediction with the

adjusted TOS (TOS + offset), which points to

the return address in main (@main in RAS).

The offset is incremented by 1 when the return

instruction is in the Decode stage. With the

proposed microarchitecture, the RAS prevents

the corruption from wrong-path instructions. It

also makes the right predictions while filling up

the IQ when the return instructions are a few

instructions apart, which occurs frequently with

recursive or nested calls.

5. Evaluation and Analysis

We have implemented the proposed

architecture with Verilog-HDL and evaluated

the performance using the RTL simulation with

Xilinx ISIM [20]. The experiments were

performed with two RAS configurations:

4-entry and 8-entry, and five benchmark

programs are executed: Dhrystone [21],

Ackermann, Sieve, Fibonacci, and Bubble Sort.

Dhrystone is a general benchmark for

embedded processors. Other benchmarks are

synthetic benchmarks. Each synthetic

benchmarks has various characteristics.

Ackermann and Fibonacci are recursive-based

function with conditional statement, whereas

Bubble Sort and Sieve are loop-based function.

So, the program flow is changed by the

parameter value.

 The baseline is the original Lucida, which

does not have RAS. Lucida has two scratchpad

memories (SPM): Instruction SPM (ISPM) and

Data SPM (DSPM). The benchmark program

was loaded into ISPM before simulations. The

Lucida requires a 1-cycle to access SPMs.

57.99

99.6399.3299.93

54.02

99.61
95.47

85.08

97.92

83.33

Bubble sort(48)
Fibonacci(18)

Dhrystone(100)
 Ackermann(3,4)

Sieve(500)
0

10

20

30

40

50

60

70

80

90

100

R
A

S
 H

it
R

at
e

(%
)

 4-entry RAS
 8-entry RAS

<Fig. 6> RAS Hit Rates

Bubble sort(48)
Fibonacci(18)

Dhrystone(100)
 Ackermann(3,4)

Sieve(500)

100

101

102

103

104

Sp
ee

d
up

(%
)

 4-entry RAS
 8-entry RAS

101.85

101.58

103.47

100.88

100.02

101.71
101.57

103.15

100.66

100.01

<Fig. 7> Speedups over the baseline

Fig. 6 shows the hit rate of RAS for each

benchmark. As expected, the 8-entry RAS

always provides a superior performance to the

4-entry RAS. In Fibonacci and Dhrystone, the

hit rate is higher than 95% with both 4-entry

and 8-entry. In Bubble Sort and Sieve, there is

roughly 14% difference in hit rate between

4-entry and 8-entry. It comes from the

overflow and underflow of RAS. In case of the

8-entry RAS, over eight consecutive calls

78 한국컴퓨터교육학회 논문지 제18권 제2호(2015.3)

Benchmark Bubble sort Fibonacci Dhrystone Ackermann Sieve

Baseline 4.38 6.80 4.85 6.80 6.06

4-entry 4.27 6.53 4.95 6.71 6.08

8-entry 4.35 6.50 4.95 6.69 6.08

<Table 3> Average Number of Flushed IQ Entries

without return make the RAS overflow, as

opposed to over 4 consecutive calls in the

4-entry RAS. Ackermann reports the lowest hit

rate under 58% even with the 8-entry RAS.

The intensive calls and returns in Ackermann

are blamed for the lowest hit rate. Depending

on the input parameter, Ackermann has three

different instruction flows, which are intensively

called in a recursive manner.

Fig. 7 shows the speedup over the baseline

for benchmark programs. Compared to the

baseline, Fibonacci reports the highest speedup

(3.47%) with the 8-entry RAS. On the other

hand, Sieve shows mere 0.01 ~ 0.02% speedup

even though the RAS hit rate in Fig. 6 is

relatively high. It is because, in Sieve, a tiny

fraction of the compiled code is return

instructions, influencing little on performance. In

contrast, Ackermann contains a much higher

portion of return instructions. Thus, RAS is

able to boost performance by 1.71% with the

4-entry RAS and by 1.85% with the 8-entry

RAS even though the hit rate is the lowest.

Considering that Lucida has a 5-stage shallow

pipeline and the control hazard incurs a 1-cycle

loss, it is a significant gain to achieve up to a

3.47% speedup. The performance benefit will be

increased much further with the long cache

access latency and even longer memory access

latency upon cache misses.

The impact of RAS on IQ utilization was

measured by two metrics: the number of IQ

flushes in Fig. 8 and the number of flushed IQ

entries in Fig. 9. As shown in Fig. 8, Fibonacci

reports the highest decrease in IQ flushes over

the baseline (58.90% decrease with 4-entry and

61.28% decrease with 8-entry). Ackermann

shows the second highest with 47.70% decrease

with 4-entry and 51.37% decrease with 8-entry.

The number of flushed entries in IQ, as

shown in Fig. 9, shows a similar trend to the

number of IQ flushes. Table 3 shows the

average number of flushed entries in IQ, which

shows a marginal difference between baseline

and architectures with the proposed RAS. When

flushed, more than 80% of IQ entries were

occupied in case of Fibonacci and Ackermann.

48.63

71.76

38.72

84.45

98.87

52.30

71.77

41.10

86.76

99.04

Bubble sort(48)
Fibonacci(18)

Dhrystone(100)
 Ackermann(3,4)

Sieve(500)
0

10

20

30

40

50

60

70

80

90

100 4-entry RAS
 8-entry RAS

<Fig. 8> Ratio of the number of flushes over
baseline

47.83

73.35

36.98

84.22

99.30

51.60

73.35

39.42

84.77

99.39

Bubble sort(48)
Fibonacci(18)

Dhrystone(100)
 Ackermann(3,4)

Sieve(500)
0

10

20

30

40

50

60

70

80

90

100

#F
lu

sh
ed

 IQ
 E

nt
rie

s
ov

er
 b

as
el

in
e

(%
)

 4-entry RAS
 8-entry RAS

<Fig. 9> Ratio of the number of flushed IQ
entries over baseline

복귀주소 스택을 활용한 얕은 파이프라인 EISC 아키텍처의 명령어 큐 효율성 향상연구 79

Section Subsection 4-entry 8-entry

Performance

Avg. speedup 101.42% 101.56%

Avg. hit rate of RAS 83.50% 90.96%

IQ flushes on avg. 70.19% 68.42%

flushed IQ entries on avg. 69.71% 68.27%

Hardware Cost
Slice Register 103.84% 107.12%

of Slice LUTs 101.49% 104.11%

<Table 4> Performance Average and Hardware Cost over Baseline

Even the lowest (Bubble Sort) reports that

more than half of entries in IQ were occupied

when flushed. The number of IQ flushes is

closely related to the speedup; the less number

of flushes incurs the higher performance

because the right stream of instructions is

prepared for execution in IQ. It is clearly

shown by comparing Fig. 8 and Fig. 9 with

Fig. 7. The highest reduction in flushes returns

the highest performance (speedup), as observed

in the Fibonacci case. The small reduction in

flushes comes with the minimal benefit in

speedup, as in Sieve. The reduction in the

number of IQ flushes has positive implications

for power consumption. Considering that the

real estate occupied by IQ is roughly 20% in

Lucida, the reduction in unnecessary IQ

buffering and cache accesses would positively

influence the overall power consumption.

Table 4 summarizes the performance average

across all benchmark programs. It also reports

the hardware cost associated with the

implemented RAS. In general, the more

investment in hardware (8-entry) always

delivers the superior performance in all metrics.

The overall performance was increased by

0.14% with 8-entry, compared to 4-entry. The

RAS hit rate is increased by roughly 7% with

8-entry, compared to 4-entry. The number of

flushes was also decreased with 8-entry

roughly by 1.5% when compared to 4-entry.

The hardware cost was measured by porting

the RTL design to a Virtex6 FPGA. The

8-entry RAS requires 3.28% more registers and

2.62% more LUTs compared to the 4-entry

RAS. As concern with the cost effectiveness,

4-entry RAS seems more efficient because

additional hardware cost in 8-entry is quite

remarkable. As mentioned, Lucida is a

processor for embedded systems. It is offered

as a synthesizable format. It means that the

hardware configuration can be fine-tuned

depending on the performance target of

applications.

6. Conclusion

This paper presented a microarchitectural

enhancement for the IQ efficiency with RAS in

a commercial EISC processor. Lucida is

equipped with the 8-entry IQ to store the

instruction stream with the LERI folding. The

IQ occupies a significant amount of real estate

in Lucida. The efficient utilization of IQ is a

key for performance and power. Taking

advantage of a shallow 5-stage pipeline in

Lucida, the proposed RAS architecture

completely eliminates the corruption by

wrong-path instructions. With the 4-entry and

8-entry RAS, the number of IQ flushes was

decreased by up to 58.90% and 61.28%,

respectively. The performance of benchmark

programs is closely related to the decrease in

IQ flushes. The more reduction in IQ flushes

returns the higher performance (speedup). The

experiments show up to 3.47% performance

improvement with 8-entry RAS.

80 한국컴퓨터교육학회 논문지 제18권 제2호(2015.3)

참 고 문 헌

[1] Thomadakis, M. E. (2011). The architecture

of the Nehalem processor and Nehalem-EP

smp platforms. Resource, 3, 2.

[2] Seznec, A., & Michaud, P. (1999).

De-aliased hybrid branch predictors.

[3] Yeh, T. Y., & Patt, Y. N. (1993). A

comparison of dynamic branch predictors

that use two levels of branch history.

ACM SIGARCH Computer Architecture

News, 21(2), 257-266.

[4] McFarling, S. (1993). Combining branch

predictors (Vol. 49). Technical Report

TN-36, Digital Western Research

Laboratory.

[5] Papermaster, M., Dinkjian, R., Jayfiield, M.,

Lenk, P., Ciarfella, B., O’Conell, F., &

DuPont, R. (1998). POWER3: Next

generation 64-bit PowerPC processor

design. IBM White Paper, October.

[6] McFarling, S. (1993). Combining branch

predictors (Vol. 49). Technical Report

TN-36, Digital Western Research

Laboratory.

[7] ARM. ARM1156T2-S™ Revision: r0p4

Technical Reference Manual.

[8] Hennessy JL, Patterson DA. (2002)

Computer architecture: a quantitative

approach: Morgan Kaufmann

[9] Lee, H., Beckett, P., & Appelbe, B. (2001,

January). High-performance extendable

instruction set computing. In Australian

Computer Science Communications (Vol.

23, No. 4, pp. 89-94). IEEE Computer

Society.

[10] Parikh, D., Skadron, K., Zhang, Y., & Stan,

M. (2004). Power-aware branch prediction:

Characterization and design. Computers,

IEEE Transactions on, 53(2), 168-186.

[11] Das, B., Bhattacharya, G., Maity, I., &

Sikdar, B. K. (2011, December). Impact of

Inaccurate Design of Branch Predictors on

Processors' Power Consumption. In

Dependable, Autonomic and Secure

Computing (DASC), 2011 IEEE Ninth

International Conference on (pp. 335-342).

IEEE.

[12] Webb, C. F. (1988). Subroutine call/return

stack. IBM Technical Disclosure Bulletin,

30(11), 221-225.

[13] Kaeli, D. R., & Emma, P. G. (1991, April).

Branch history table prediction of moving

target branches due to subroutine returns.

In ACM SIGARCH Computer Architecture

News (Vol. 19, No. 3, pp. 34-42). ACM.

[14] Jourdan, S., Stark, J., Hsing, T. H., & Patt,

Y. N. (1997). Recovery requirements of

branch prediction storage structures in the

presence of mispredicted-path execution.

International Journal of Parallel

Programming, 25(5), 363-383.

[15] Skadron, K., Ahuja, P. S., Martonosi, M.,

& Clark, D. W. (1998, November).

Improving prediction for procedure returns

with return-address-stack repair

mechanisms. In Proceedings of the 31st

annual ACM/IEEE international symposium

on Microarchitecture (pp. 259-271). IEEE

Computer Society Press.

[16] Wang, G., Hu, X., Zhu, Y., & Zhang, Y.

(2012, June). Self-Aligning Return Address

Stack. In Networking, Architecture and

Storage (NAS), 2012 IEEE 7th

International Conference on (pp. 278-282).

IEEE.

[17] Vandierendonck, H., & Seznec, A. (2008).

Speculative return address stack

management revisited. ACM Transactions

on Architecture and Code Optimization

(TACO), 5(3), 15.

[18] Kim, H. G., Jung, D. Y., Jung, H. S., Choi,

Y. M., Han, J. S., Min, B. G., & Oh, H. C.

(2003). AE32000B: a fully synthesizable

32-bit embedded microprocessor core.

ETRI journal, 25(5), 337-344.

[19] Intel 64 and IA-32 Architectures

복귀주소 스택을 활용한 얕은 파이프라인 EISC 아키텍처의 명령어 큐 효율성 향상연구 81

Optimization Reference Manual.

http://www.intel.com/content/dam/doc/manu

al/64-ia-32-architectures-optimization-manu

al.pdf.

[20] Xilinx. ISE Simulator (ISim).

http://www.xilinx.com/tools/isim.htm.

[21] Weicker, R. P. (1984). Dhrystone: a

synthetic systems programming

benchmark. Communications of the ACM,

27(10), 1013-1030.

김 한 이

 2012 고려 학교

 컴퓨터교육과 (학사)

 2012～ 재 고려 학교

 컴퓨터교육과

 석박사통합과정

심분야: 컴퓨터구조, 임베디드 시스템

E-Mail: hanyeemy@korea.ac.kr

이 승 은

 1998 한국과학기술원

 기공학과 (학사)

 2000 한국과학기술원

 기공학과 (석사)

2008 UC Irvine Electrical and Computer

 Engineering

2008～2010 Intel Corporation Platform Architect

2010～ 재 서울과학기술 학교 교수

심분야: 컴퓨터구조, 티 로세서 시스템온칩,

네트워크온칩

E-Mail: seung.lee@seoultech.ac.kr

김 관 영

 1990 성균 학교

 자공학과 (학사)

 1989～1999 삼성 자 연구원

 2000～ 재 Adchips 상무이사

심분야: 임베디드 CPU, 컴퓨터구조, 멀티미디어

시스템온칩

E-Mail: kevinkky@adc.co.kr

서 태 원

 1993 고려 학교

 기공학과 (학사)

 1995 서울 학교

 자공학과 (석사)

1995～1998 LG종합기술원 주임연구원

1998～2001 하이닉스반도체 선임연구원

2006 Georgia Institute of Technology Computer

 Engineering (공학박사)

2007～2008 Intel Corporation System Engineer

2008～ 재 고려 학교 컴퓨터교육과 교수

심분야: 컴퓨터구조, 임베디드 시스템, 컴퓨터교

육, 멀티 로세서

E-Mail: suhtwa@korea.ac.kr

