i
-4
-+
k>
[>
i
o
nik
00
o
me
ro
1=l
o

=
1
0
m
w
(@)
io)
Rl
|0
08
0
2
Ju
fol
nijo
0z
09
0z
|'O

BAFE 29 28T L o] xejel
EISC ol7l931e] Be] 7 584 F4AT

dstol” - olse” - A" . o Mega™
2 9%
EISC Z2AAolM LERI £93} 7= W3S Adshs BR8] e st=dol 4o 20%E 244
s, O B84 H”Oﬂ 142—2 th & AT A= EISC Z2ZAA] Wio] F of7|dd a&Ad P4
. T EE o7l A= EISCe] &2 dfo]zefdl Frxo] oS

AS Conuption 5XﬂE A A }‘Eit‘r. 23] OM 47H A E 7 ¢
=k £ A3 A3 g/ dEZ S RASE 347%9] *é%%“o‘g HO%? H 0”5?4«1 RASL

FAo : BISC, WHol 7, BAF 2 26, ¥7] d27], vho] Ao} 8l

Enhancing Instruction Queue Efficiency with Return

71

Address Stack in Shallow-Pipelined EISC Architecture

Han-Yee Kim' - SeungEun Lee'" - Kwan-Young Kim™" - Taeweon Sun'™""

ABSTRACT

In the EISC processor, the Instruction Queue (IQ) supporting LERI folding and loop buffering
occupies roughly 20% of real estate, and its efficient utilization is a key for performance. This paper
presents an architectural enhancement for the IQ utilization with return address stack (RAS) in the
EISC processor. The proposed architecture eliminates the RAS corruption from the wrong-path,
taking advantage of shallow pipeline. In experiments, a 4-entry RAS reduces the number of IQ
flushes by up to 58.90% over baseline, and an 8-entry RAS by up to 61.28%. The experiments
show up to 347% performance improvement with 8-entry RAS and up to 3.15% performance

improvement with 4-entry RAS.

Keywords : EISC, Instruction Queue, Return Address Stack, Branch Predictor,

Microarchitecture
T3 3 o nydiga AFE S5 Autestay
T A g A AR d g Ay} ag
TE ot A 3 Y ooojt R AFolAL
Tt S et HFEH S m;(aﬁqup

=EAHS 201449 12€ 10‘” AAREE: 20159 19 249, AAEA: 20159 3€ 9
£ B =R 20159 ARGLEHIFR) AAoR FRATAT S EATAY AU wob £
(NRF-2014R1A1A2059652)

oo

72 SEHAFEHWSES =2X H18F HM25(2015.3)

1. Introduction

In modern high-performance computers, the
instruction queue (IQ) is typically employed to
bridge the latency difference between CPU core
and cache, and feeds the CPU with proper
instructions. For example, Nehalem [1] is able
to store up to 18 instructions in IQ to mitigate
of the 3-cycle latency of L1
Thus, for the CPU

crucial to

the impact
instruction cache.
performance, it is place proper
instructions in IQ, and it is closely related to
the hit rate of branch predictors. The higher
the hit rate is, the CPU is better serviced with
the instruction stream.

The branch predictors [2-4] are commonly
incorporated in commercial CPUs ranging from
embedded processors to server processors [1,
5-7]. For example, ARM1136 [6] has a 3-entry
return address stack (RAS) and a 128-entry
BTB. Power3 [5] has a 8-entry RAS and a
256-entry BTB. The branch predictor especially
plays
deep-pipelined processors, where the control

a key role for performance in the
hazard incurs a considerable number of cycle
loss. In addition, in superscalar processors such
as x86, multiple instructions are executed
simultaneously. Considering that roughly 20%
of the instructions in programs are branches
[8], the importance of branch predictor cannot
be over—emphasized. For the low-cost
embedded processors with shallow pipeline
stages, the role of branch predictor has been
overlooked since the control hazard incurs only
a few cycle penalty, and the hardware overhead
of the branch predictor could be an overkill.
Thus, there are few studies quantifying its
impact on performance.

In this paper, we have used a commercial
embedded processor, a
Extendable Instruction Set Computer (EISC)

processor from Adchips [9] and enhanced the

5-stage pipelined

with RAS.

Unlike the previous work, the proposed scheme

IQ efficiency and performance
completely removes the RAS corruption from
the wrong-path prediction, taking advantage of
the shallow pipeline. According to experiment
results, the proposed RAS has a significant
impact on IQ efficiency and performance. The
of 1IQ

flushes can be reduced to as low as 38.72%,

experiments show that the number

compared to the Dbaseline, boosting the
application performance by as high as 3.47%.
Unlike the previous studies, we have used the
actual RTL code for the experiments.

The rest of the paper is organized as follows.
Section 2 summarizes the related work. Section
3 explains the IQ organization and its role in
the EISC processor. Section 4 discloses the
detailed design of the proposed RAS and its
operation with IQ. Section 5 presents the
experiment results and its analysis. Finally,

Section 6 concludes our paper.

2. Related work

There are few studies or reports quantifying
the IQ efficiency with branch prediction. Most
of studies simply measured performance and/or
branch predictors

power consumption of

assuming superscalar processors with wide
issue widths. In addition, unlike our study,
most of researches conducted with software
simulators, without actual implementation of
RTL code.

Parith [10] utilized SimpleScalar and Wattch
with an out-of-order CPU configuration to
investigate the power consumption problem
with branch predictor. The study concludes that
it is worth spending more power in branch
predictor if it results in more accurate
prediction that improves execution time. Das
[11] investigated the impact of faulty branch

predictor on power consumption. The study

reveals that the design inaccuracy could lead to
(up to 95% additional

power). Thus, fault-tolerant predictor design is

a huge power loss

essential for chip multiprocessors.

Works on Return Address Stack (RAS) were
first performed by Webb [12] and Kaeli [13].
Jordan [14] proposed a checkpointed RAS that
provides a recovery mechanism in case RAS is
corrupted from the wrong-path instructions.
The proposed RAS scheme provides a link to
the next element such as the linked list in data
Skadron [15]

cost—effective RAS with a recovery mechanism,

structure. proposed an
which stores the RAS pointer and data Q.e.,

return address) whenever the processor
speculates past a branch. The RAS pointer and
data are stored along with the register-rename
map, which is already implemented in
superscalar processors. More recently, Wang
[16] proposed another RAS structure referred to
as self-aligning RAS (SARAS). SARAS has an
aligning queue where the popped entry from
RAS is recorded along with its index. The
popped entries are recovered from the aligning
queue to the RAS wupon the detection of
Vandierendonck [17]
proposed a low-cost corruption detector for
RAS (CT-RAS), which adds a corruption bit in
every entry of RAS and includes a separate
table called CheckTOS. If the corruption bit is

set in RAS, it indicates that the corresponding

wrong-path execution.

entry is overwritten via a wrong-path call. The
experiments show that CT-RAS provides a
superior performance to the checkpointed RAS
when the number of entries in RAS is less
than 32.

Table 1 summarizes the hardware details of
processors. ARMI1136 [6] and
ARM1156 [7] have a 3-entry RAS with 3-cycle
miss penalty with 8 and 9

commercial

pipelines,
respectively. Power3 [5] has an 8-entry RAS
variable

with 3-cycle miss penalty with

pipelines depending on integer or floating—point
processing. Commercial embedded processors [6]
[7] rarely disclose the microarchitectural details
such as IQ due in part to confidentiality. To
the best of our knowledge, the performance
impact of RAS in terms of IQ on [6] [7] has
not been published.

<Table 1> RAS and Miss Penalty in Commercial

Processors
Processors ARM1136 [6] ARM1156 [7] Power3 [5]
Pipeline stages 8 9 7710
RAS entries 3 3 8
Miss penalty 5 cycle 7 cycle 3 cycle
3. Instruction Queue in EISC

Processor

EISC is a 32-bit architecture with 16-bit
instruction set for embedded systems. With the
16-bit instructions, it improves the code density
compared to 32-bit instruction set architecture.
One of the Kkey EISC
microarchitecture Lucida
hereafter) is that it provides a capability of
32-bit 16-bit

instructions without accessing memory. It is

features in the
(referred to as
creating immediate with
achieved through the consecutive instructions
called LERI that store parts of 32-bit
immediate. In Lucida, hardware formulates the
32-bit immediate with the LERI folding [18]
logic in the fetch stage. Then, the immediate is
passed through to subsequent pipeline stages.

Lucida has a generic b-stage pipeline
composed of Fetch, Decode, Execution, Memory
and Writeback. It

8-entry IQ in the Fetch stage. Fig. 1 shows

Access incorporates the
the schematic diagram of 1Q. The IQ stores
instructions from instruction cache where 2
instructions are brought to the CPU core at a
time. Before buffering instructions to I1Q, the

LERI folding logic detects and combines the

74 SIEAREHWSES ==X M18A M25(2015.3)

consecutive LERI instructions to create 32-bit
immediate. Each entry in IQ stores not only an
instruction, but also 32-bit immediate, flags,
and program counter for precise interrupt
support. Thus, the LERI instruction itself does

not occupy an entry in IQ.

Lucida

IF Stage ID Stage
1Q
PC | Instruction | ER Miscellaneous
1$ v
Write
Polnter ?

? Read
Pointer

<Fig. 1> Instruction Queue in Lucida

Another important role of IQ is for providing
the loop buffering mechanism. It is similar to
the Loop Stream Detection (LSD) in x86. In
case of Nehalem [1], LSD is activated if ?ops
in a loop is within 28 slots. In Lucida, the loop
buffering 1is activated if the number of
instructions in a loop is equal to or less than 8
LERI

instructions in the loop. The loop buffering

instructions without counting the
provides a significant performance and power

advantage since instructions are directly
supplied from the IQ while executing the loop
without accessing instruction cache.

To determine the loop, Lucida incorporates a
simple branch predictor which has only 4-entry
buffer (BTB) in a fully

associative configuration with the pseudo LRU

branch target
replacement. If a branch instruction hits one of
BTB in the Fetch
destination is within 8 instructions away, the
In Lucida, the

branch is resolved in the Decode stage. In case

stage and the branch
activated.

loop buffering is

of mis—prediction, the corresponding entry in

BTB is invalidated and the correct destination

is recorded. In addition, IQ is flushed since it
was buffering wrong-path instructions from the

branch destination.

<Table 2> Branch Instruction in EISC and Branch
Predictor

Branch Instructions in EISC Branch Predictor
JMP (Jump)

JNV (Jump on overflow clear)

JV (Jump on overflow set)
JP (Jump on sign clear)
JN (Jump on sign set)
JNZ (Jump on non-zero)
JZ (Jump on zero)

JNC (Jump carry clear)
JC (Jump carry set) BTB
JGT (Jump signed greater)

JLT (Jump signed less)

JGE (Jump signed greater or
equal)

JLE (Jump signed less or equal)
JHI (Jump unsigned higher)

JLS (Jump unsigned lower or
equal)

JAL (Jump and link): LR <

BTB, RAS Push

PC+2

JPLR (Jump link register): PC

~— LR

POP PC: PC < popped entry RAS Pop
from stack

JR (Jump register indirect): PC

— %RS

JALR (Jump register indirect and None
link): LR < PC+2,

PC < %RS

Table 2 summarizes the branch instructions
in EISC. Among them, the branch predictor in
Lucida handles
instructions, whereas the destination of the
return instructions (JPLR and POP PC) is not

predicted in BTB, resulting in control hazard.

the original direct branch

The control hazard in Lucida pipeline incurs at
least a 1-cycle loss in the pipeline; The long
cache access latency or memory access in case
of a cache miss incurs additional penalty. As
mentioned, mis—prediction and
control hazard incurs the IQ flush. The IQ

flush adversely affects the performance and

consequent

power consumption since the IQ should newly
be filled from cache and the additional cache

accesses consume power. Thus, it is essential

to reduce the number of IQ flushes as long as
the new hardware investment does not overkill
its benefits.

When ported to a Virtex-6 FPGA, the 1IQ in
Lucida requires 20.29% of registers and 14.79%
of LUTs out of the total

consumption. Considering that Lucida is used in

hardware
embedded systems, the hardware cost of IQ is

significant and its efficient utilization is a key

issue for performance.

4. 1Q and RAS in Lucida

Branch Target Buffer

Tag | Target | Tag |Target | Tag |Target | Tag |Target

iEssy

>

RAS

Return
Commit
offset (T0S =) —-- | RAB[TOS+ offset]

Return
Prediction

PE

7

<Fig. 2> BTB and RAS in Lucida

Fig. 2 shows the schematic diagram of the
branch predictors in Lucida. As mentioned, the
BTB is incorporated in the original Lucida. The
RAS was newly designed for the study to
support the prediction for the return
instructions. The number of evaluated entries in
RAS is 4 or 8. It was chosen not to invest too
much hardware because Lucida is a processor

used in embedded systems.

4.1 Basic Operation of RAS in Lucida

The RAS in Lucida is essentially a circular

buffer, which 1is indexed by top-of-stack

(TOS). Fig. 3 demonstrates the timing diagram
of the RAS push and pop operations. The
previous work [15] [16] assumes that TOS is
updated in the Fetch stage and the branch is
resolved in writeback stage. Thus, it introduces
the risk of RAS

wrong-path

corruption from the
instructions upon branch
misprediction. In Lucida, TOS is updated at the
Decode stage. It completely eliminates the RAS
corruption if not overflowed, because the branch
is resolved in the Decode stage. The prediction
for the return instructions occurs in the Fetch
stage when filling up IQ, as depicted in Fig. 3.
To handle the TOS skew between prediction
and RAS update, an additional pointer called
offset is used to adjust TOS so that the right
position in RAS 1is accessed for prediction. The
detailed operation of offset is explained in the

following section with an example.

A alinlinigigipipinigigh
RASPush ||]

jal Loop wessmerssree ;,‘ Flpol & ‘ M ‘ w ‘
. Flp[e[m[w]
-] o TOS++H / TOS--
loop*? @ T1OS change 7J77 RAS Hi" [
[F]o[E[m][w]
RAS Pop

jplr

RAS Predict

<Fig. 3> Pipeline Timing Diagram of push and
pop in Lucida RAS

TOS and offset are initialized to zero at
reset. TOS is incremented by 1 after pushing
the return address to an entry in RAS when a
subroutine call instruction is detected. TOS is
decremented by 1 after the return instruction is
detected in the Decode stage. TOS wraps
around to the beginning when it reaches to the
top of RAS.

42 10 and RAS Detailed Operation

The impact of RAS on the IQ efficiency and
performance can be well explained with an

example. In Lucida, all the instructions in a

76 SHEAFEHWSESE =2X M18F HM25(2015.3)

program go through IQ to the subsequent
stages for execution. Fig. 4 shows two C-code
examples where RAS can be well utilized. Fig.
4 (a) is a recursive call to compute factorials
where the return instructions are executed
almost consecutively. Fig. 4 (b) is a nested
function call where the return instructions are

used to return to the callers.

v funcA() {
int factorial (int n) { main() { ! funcB();
it (n<=1) ! S
return 1; funcA |) return O;
1
el se return 0; | funcB() {
return (n * factorial(n-1)); i
} ! return O;

(a) Recursive Procedure Call (b) Nested Procedure Call
<Fig. 4>

Fig. 5 shows the IQ and RAS status without
and with RAS for comparison, as Lucida runs
the instructions compiled for the code of Fig. 4
(b). Fig. 5 (a) illustrates the detailed operations
of the Lucida without RAS, and Fig. 5 (b)
demonstrates the enhanced version with RAS.
The jal instructions (D and @) are used for
calling functions (funcA and funcB). The jplr
instruction (@) is used to return to funcA,
which triggers the control hazard. The pop pc
instruction (@) is used to return to main. The
pop pc loads from memory to the PC register,

and it occurs in the Memory Access stage. In

Lucida, the pop pc instruction stalls the pipeline
because the subsequent instructions would be
nullified anyway. In case of Fig. 5 (a), the first
jal (©) incurs an IQ flush, which is inevitable
since it changes the instruction flow with a
BTB miss (first call). (@)

incurs another IQ flush as well for the same

The second jal

The destination of the first return
(®)) is fetched after the

Decode stage due to the control hazard. The

reason.
instruction (jplr
destination of the second return instruction (pop
pc (@)) is fetched after the Memory Access
stage due to the control hazard. The return
instructions (plr (@) and pop pc (@)) also
flushes IQ due to the changes in instruction
flow and the lack of the prediction logic.

On the other hand, in case of Fig. 5 (b), two
RAS hits prevent the last two IQ Flushes in
Fig. 5 (a). The first jal (@) incurs a push of
in main to RAS in the
Decode stage and flushes IQ. The second jal

the return address

(@) also incurs a push of the return address in
funcA to RAS with another IQ flush. At this
point, the RAS status is shown in Fig. 5 (b)
where TOS points to the return address to
funcA. When the first return instruction (jplr)
is filled up in IQ, RAS makes a prediction (@3:

(a) Nested Procedure Call without RAS

1Q 1Q RAS
(main)
(funcA) (funcB) (funcA) (main) (funcA) (funcB) pop %pc |@ RAS Hit @funcA @,® |«+TOS
jal @ IQ Flush | jal @ 1Q Flush | jplr ® 1Q Flush | pop %pc |@ 1Q Flush jal @ 1Q Flush | jal (@ 1Q Flush | (funcA) @main @©,@
ipir @3 RAS Hit
(main) 1 grow (funcA) (funcB) (funcA) (main) 1 grow (funcA) (funcB) 1 grow
main: > Time main: > Time
jal - funcA | 5 jal funcA
@C--- rFDEMW @C--- ‘ Al -| -| -|D|E [MW
funcA: funcA: r
: ® : ®
jal funcB jal funcB
FID|E|M[W :41: DIEiMiw
@ pop %pc E|D|- |E|MIW @ pop %pc EfD| - |E|M|W
®
funcB:] funcB:
iplr F{DiEjMjW jpir L FlD|E[M|wW

(b) Nested Procedure Call with RAS

<Fig. 5>

RAS Hit). However, TOS is not decremented
since the jplr is not in the Decode stage yet
(jplr is still in IQ). Note that TOS is updated
in the Decode stage. To account for the skew,
the offset is decremented by 1. Thus, offset
becomes -1 at this point in time. Following the
RAS prediction, IQ is continuously filled with
the instructions after the funcB call in funcA.
Assume that the next return instruction (pop
pc) is just a few instructions away from the
first one (jplr). When pop pc (@) is inserted in
1IQ, the RAS makes another prediction with the
adjusted TOS (TOS + offset), which points to
the return address in main (@main in RAS).
The offset is incremented by 1 when the return
instruction is in the Decode stage. With the
proposed microarchitecture, the RAS prevents
the corruption from wrong-path instructions. It
also makes the right predictions while filling up
the IQ when the return instructions are a few
instructions apart, which occurs frequently with

recursive or nested calls.

5. Evaluation and Analysis

We have
architecture with Verilog-HDL and evaluated

implemented the proposed
the performance using the RTL simulation with
Xilinx ISIM [20]. The experiments were
performed with two RAS
4-entry and &-entry,

configurations:
and five benchmark
Dhrystone [21],

Ackermann, Sieve, Fibonacci, and Bubble Sort.

programs are executed:

Dhrystone is a general benchmark for
embedded processors. Other benchmarks are
synthetic

synthetic benchmarks. Each

benchmarks has various characteristics.
Ackermann and Fibonacci are recursive—-based
function with conditional statement, whereas
Bubble Sort and Sieve are loop-based function.
So, the program flow 1is changed by the

parameter value.

The baseline is the original Lucida, which
does not have RAS. Lucida has two scratchpad
memories (SPM): Instruction SPM (ISPM) and
Data SPM (DSPM). The benchmark program
was loaded into ISPM before simulations. The

Lucida requires a 1-cycle to access SPMs.

RAS Hit Rate (%)

3

i(18 ths{one(lomAckermann

<Fig. 6> RAS Hit Rates

104

111111

111111

=
Q
w

=
o
N

111111
111111

Speed up(%)

i
o
=

000000
000000

100

7

gubble S

)

ths\ong(lOO)Ackermann

ort(48) i(18)

Fiponacc 34

Sieve(500)

<Fig. 7> Speedups over the baseline

Fig. 6 shows the hit rate of RAS for each
benchmark. As expected, the 8-entry RAS
always provides a superior performance to the
4-entry RAS. In Fibonacci and Dhrystone, the
hit rate is higher than 95% with both 4-entry
and 8-entry. In Bubble Sort and Sieve, there is
roughly 1496 difference in hit rate between
4-entry and 8-entry. It comes from the
overflow and underflow of RAS. In case of the
RAS,

8-entry over eight consecutive calls

78 SIERAREHWSESE ==X HM18A H2%(2015.3)

without return make the RAS overflow, as
opposed to over 4 consecutive calls in the
4-entry RAS. Ackermann reports the lowest hit
rate under 58% even with the 8-entry RAS.
The intensive calls and returns in Ackermann
are blamed for the lowest hit rate. Depending
on the input parameter, Ackermann has three
different instruction flows, which are intensively
called in a recursive manner.

Fig. 7 shows the speedup over the baseline
for benchmark programs. Compared to the
baseline, Fibonacci reports the highest speedup
(3.47%) with the 8-entry RAS. On the other
hand, Sieve shows mere 0.01 ~ 0.02% speedup
even though the RAS hit rate in Fig. 6 is
relatively high. It is because, in Sieve, a tiny
fraction of the compiled code 1is return
instructions, influencing little on performance. In
contrast, Ackermann contains a much higher
portion of return instructions. Thus, RAS is
able to boost performance by 1.71% with the
4-entry RAS and by 1.85% with the 8-entry
RAS even though the hit rate is the lowest.
Considering that Lucida has a 5-stage shallow
pipeline and the control hazard incurs a 1-cycle
loss, it is a significant gain to achieve up to a
3.47% speedup. The performance benefit will be
increased much further with the long cache
access latency and even longer memory access
latency upon cache misses.

The impact of RAS on IQ utilization was
measured by two metrics: the number of IQ
flushes in Fig. 8 and the number of flushed IQ
entries in Fig. 9. As shown in Fig. 8, Fibonacci
reports the highest decrease in IQ flushes over
the baseline (58.90% decrease with 4-entry and
61.28% decrease with 8-entry). Ackermann

shows the second highest with 47.70% decrease
with 4-entry and 51.37% decrease with 8-entry.

The number of flushed entries in IQ, as
shown in Fig. 9, shows a similar trend to the
number of IQ flushes. Table 3 shows the
average number of flushed entries in IQ, which
shows a marginal difference between baseline
and architectures with the proposed RAS. When

flushed, more than 80% of IQ entries were

occupied in case of Fibonacci and Ackermann.

) -

<Fig. 8> Ratio of the number of flushes over
baseline

%
N
%
%
%
%

#Flushed IQ Entries over baseline (%)

2

pubble sont(48) \:\bonac‘j‘(lg) thsm\"e@omAckerma““@'A‘) S-\e\,e(SOO)

<Fig. 9> Ratio of the number of flushed 1Q
entries over baseline

<Table 3> Average Number of Flushed IQ Entries

Benchmark Bubble sort Fibonacci Dhrystone Ackermann Sieve
Baseline 4.38 6.80 4.85 6.80 6.06
4-entry 4.27 6.53 4.95 6.71 6.08
8-entry 4.35 6.50 495 6.69 6.08

<Table 4> Performance Average and Hardware Cost over Baseline

Section Subsection 4-entry 8-entry
Avg. speedup 101.42% 101.56%

Performance Avg. hit rate of RAS 83.50% 90.96%
1Q flushes on avg. 70.19% 68.42%

flushed IQ entries on avg. 69.71% 68.27%

Hardware Cost # Slice Register 103.84% 107.12%
of Slice LUTs 101.49% 104.11%

Even the lowest (Bubble Sort) reports that
more than half of entries in IQ were occupied
when flushed. The number of IQ flushes is
closely related to the speedup; the less number
the
because the right stream of
in IQ. It
shown by comparing Fig. 8 and Fig. 9 with

of flushes incurs higher performance
instructions is
prepared for execution 1s clearly
Fig. 7. The highest reduction in flushes returns
the highest performance (speedup), as observed
in the Fibonacci case. The small reduction in
benefit in

in the

flushes comes with the minimal

speedup, as in Sieve. The reduction
number of IQ flushes has positive implications
for power consumption. Considering that the
real estate occupied by IQ is roughly 20% in
the

buffering and cache accesses would positively

Lucida, reduction in unnecessary IQ
influence the overall power consumption.
Table 4 summarizes the performance average

across all benchmark programs. It also reports

the hardware cost associated with the
implemented RAS. In general, the more
investment in hardware (8-entry) always

delivers the superior performance in all metrics.

The overall performance was increased by
0.14% with 8-entry, compared to 4-entry. The
RAS hit rate is increased by roughly 7% with
8-entry, compared to 4-entry. The number of
flushes was also decreased with 8-entry
roughly by 15% when compared to 4-entry.
The hardware cost was measured by porting
the RTL design to a Virtex6 FPGA. The
8-entry RAS requires 3.28% more registers and

2.62% more LUTs compared to the 4-entry

RAS. As concern with the cost effectiveness,

4-entry RAS seems more efficient because
additional hardware cost in 8-entry 1is quite
remarkable. As mentioned, Lucida 1is a

processor for embedded systems. It is offered
as a synthesizable format. It means that the
fine-tuned

configuration can be

the

hardware

depending on performance target of

applications.

6. Conclusion

This

enhancement for the IQ efficiency with RAS in

paper presented a microarchitectural

a commercial EISC processor. Lucida is
equipped with the 8-entry IQ to store the
instruction stream with the LERI folding. The
IQ occupies a significant amount of real estate
in Lucida. The efficient utilization of IQ is a
key for performance and power. Taking
advantage of a shallow b5-stage pipeline in
the RAS
the
wrong-path instructions. With the 4-entry and
8-entry RAS, the number of IQ flushes was
5890% and 61.28%,

respectively. The performance of benchmark

Lucida, proposed architecture

completely eliminates corruption by

decreased by up to

programs is closely related to the decrease in
1Q flushes. The more reduction in IQ flushes
returns the higher performance (speedup). The
experiments show up to 3.47% performance

improvement with 8-entry RAS.

80

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

SHEHAFENSSSE =2X M18& HM25(2015.3)

o
ki
O
[

Thomadakis, M. E. (2011). The architecture
of the Nehalem processor and Nehalem-EP
smp platforms. Resource, 3, 2.

& Michaud, P.
De-aliased hybrid branch predictors.
Yeh, T. Y., & Patt, Y. N. (1993). A
comparison of dynamic branch predictors

(1999).

Seznec, A,

that use two levels of branch history.
ACM SIGARCH Computer Architecture
News, 21(2), 257-266.

McFarling, S. (1993). Combining branch

predictors (Vol. 49). Technical Report
TN-36, Digital Western Research
Laboratory.

Papermaster, M., Dinkjian, R., Jayfiield, M.,
Lenk, P., Ciarfella, B., OConell, F., &
DuPont, R. (1998). POWER3: Next
generation 64-bit PowerPC processor
design. IBM White Paper, October.

McFarling, S. (1993). Combining branch
predictors (Vol. 49). Technical Report
TN-36, Digital Western Research
Laboratory.

ARM. ARMI1156T2-STM Revision: rOp4
Technical Reference Manual.

Patterson DA.
architecture: a

(2002)
quantitative

Hennessy JL,
Computer
approach: Morgan Kaufmann

Lee, H., Beckett, P., & Appelbe, B. (2001,
January). High-performance extendable
instruction set computing. In Australian
Computer Science Communications (Vol.
23, No. 4, pp. 89-94). IEEE Computer
Society.

Parikh, D., Skadron, K., Zhang, Y., & Stan,
M. (2004). Power-aware branch prediction:
Characterization and design. Computers,
IEEE Transactions on, 53(2), 168-186.

Das, B., Bhattacharya, G., Maity, I, &
Sikdar, B. K. (2011, December). Impact of

Inaccurate Design of Branch Predictors on

[19] Intel 64 and

Processors’ Power Consumption. In
Dependable, Autonomic and Secure
Computing (DASC), 2011 IEEE Ninth

International Conference on (pp. 335-342).
IEEE.

[12] Webb, C. F. (1988). Subroutine call/return

stack. IBM Technical Disclosure Bulletin,
30(11), 221-225.

[13] Kaeli, D. R.,, & Emma, P. G. (1991, April).

Branch history table prediction of moving
target branches due to subroutine returns.
In ACM SIGARCH Computer Architecture
News (Vol. 19, No. 3, pp. 34-42). ACM.

[14] Jourdan, S., Stark, J., Hsing, T. H., & Patt,

Y. N. (1997). Recovery requirements of
branch prediction storage structures in the
presence of mispredicted—path execution.
International Journal of Parallel

Programming, 25(5), 363-383.

[15] Skadron, K., Ahuja, P. S., Martonosi, M.,

& Clark, D. W. (1998,

Improving prediction for procedure returns

November).
with return—address—stack repair
mechanisms. In Proceedings of the 3lst
annual ACM/IEEE international symposium
on Microarchitecture (pp. 259-271). IEEE
Computer Society Press.

[16] Wang, G., Hu, X., Zhu, Y., & Zhang, Y.

(2012, June). Self-Aligning Return Address
Stack. In Networking, Architecture and
(NAS), 2012 IEEE 7th
International Conference on (pp. 278-282).
IEEE.

Storage

[17] Vandierendonck, H., & Seznec, A. (2008).

Speculative return address stack
management revisited. ACM Transactions
on Architecture and Code Optimization

(TACO), 5(3), 15.

[18] Kim, H. G., Jung, D. Y., Jung, H. S., Choi,

Y. M, Han, J. S, Min, B. G., & Oh, H. C.
(2003). AE32000B: a fully synthesizable
32-bit embedded microprocessor core.
ETRI journal, 25(5), 337-344.

1A-32 Architectures

Q
ro
El

Optimization Reference Manual.
http://www.intel.com/content/dam/doc/manu

al/64-ia-32-architectures—optimization-manu

al.pdf.

[20] Xilinx. ISE Simulator (ISim).
http://www.xilinx.com/tools/isim.htm.

[21] Weicker, R. P. (1984). Dhrystone: a
synthetic systems programming

benchmark. Communications of the ACM,
27(10), 1013-1030.

2012~ A o)
738 3% 3}
EERELEE

Aok ARE TR, GuHE Asg

-Mail: hanyeemy @Kkorea.ac.kr

1998 gk 33}t 7] <

A7) 8k (5“})
Eigeet el g
A7) 83 (AAH
2008 UC Irvine Electrical and Computer

Engineering

2008~2010 Intel Corporation Platform Architect
2010~ At uag
Aok AFHAER, YEHIZEZAA A=

_I

d

=

= 2000

B © %)

Hy
YE T3
E-Mail: seung.lee@seoultech.ac.kr
FANE -
1990 A#HAostw
AA-E S} (5HAD)
1989~1999 AHA A= A+<

2000~ @A Adchips o] AF
B iok it = CPU, AFE T2, WEvto]
SEEEE

E-Mail: kevinkky@adc.co.kr

M E{ A

WIA= e oI
A7) g eta (3HA})
A8 8w

~— AAZ S (4D
1995 1998 LG*5L7] 4 FdATd
1998~2001 slolY=wtm=A] A<
2006 Georgia Institute of Technology Computer

Engineering (& 88HA}L)
2007~2008 Intel Corporation System Engineer
2008~A evieta PFE LG WS
ARk AFE TR, Qs AxE, AR
=, DE Z2AA

E-Mail: suhtwa@korea.ac.kr

