DOI QR코드

DOI QR Code

Effects of Temperature on the Changes of Enzymatic Activities and Metabolite during Wheat nuruk Fermentation

밀누룩 발효기간 동안 효소와 대사체 변화에 대한 온도의 영향

  • Lee, Se Hee (Fermented Food Science Division, Department of Agrofood Resources, National Academy of Agricultural Science, RDA) ;
  • Baek, Seong Yeol (Fermented Food Science Division, Department of Agrofood Resources, National Academy of Agricultural Science, RDA) ;
  • Kang, Ji-Eun (Fermented Food Science Division, Department of Agrofood Resources, National Academy of Agricultural Science, RDA) ;
  • Jeon, Che Ok (Department of Life Science, Chung-Ang University) ;
  • Kim, Dae-Hyuk (Department of Molecular Biology, Chonbuk National University) ;
  • Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Yeo, Soo-Hwan (Fermented Food Science Division, Department of Agrofood Resources, National Academy of Agricultural Science, RDA)
  • 이세희 (농촌진흥청 국립농업과학원 농식품자원부 발효식품과) ;
  • 백성열 (농촌진흥청 국립농업과학원 농식품자원부 발효식품과) ;
  • 강지은 (농촌진흥청 국립농업과학원 농식품자원부 발효식품과) ;
  • 전체옥 (중앙대학교 자연과학대학 생명과학과) ;
  • 김대혁 (전북대학교 자연과학대학 분자생물학과) ;
  • 김명동 (강원대학교 농업생명과학대학 식품생명공학과) ;
  • 여수환 (농촌진흥청 국립농업과학원 농식품자원부 발효식품과)
  • Received : 2015.10.07
  • Accepted : 2015.11.15
  • Published : 2015.12.28

Abstract

Nuruk is a fermentation agent, which has been used for the production of traditional Korean alcoholic beverages. The objective of this study was to investigate the effects of temperature on nuruk fermentation. One wheat nuruk sample was fermented at $36^{\circ}C$ for 30 days (TN-A) and another at $45^{\circ}C$ for 10 days followed by $36^{\circ}C$ for 20 days (TN-B). The activities of ${\alpha}$-amylase, glucoamylase, and acidic protease, as well as metabolite contents were measured. Initially, the enzymatic activities increased rapidly regardless of the fermentation temperature. After 3 days of fermentation, the enzymatic activities were maintained in TN-A, but gradually decreased in TN-B until the end of fermentation process. Metabolite analysis using $^1H$-NMR showed that the levels of glucose, glycerol, fructose, mannitol, and lactose initially increased quickly and then decreased in TN-A. However, they initially decreased and then were maintained over the fermentation period in TN-B. The contents of glycine, proline, and serine were higher in TN-A than in TN-B. This study suggests that a constant temperature of approximately $36^{\circ}C$ is appropriate for achieving high amylolytic and proteolytic activities in the production of wheat nuruk.

누룩은 전통주를 빚기 위한 발효제이다. 본 연구의 목적은 누룩 발효시 온도의 영향을 알아보기 위한 것이다. 누룩 발효는 $36^{\circ}C$에서 30일간 발효한 처리구(TN-A)와 $45^{\circ}C$에서 10일간 전발효 후, $36^{\circ}C$에서 20일간 후 발효시킨 처리구(TN-B)로 실험하였다. 누룩 발효시 온도에 따른 ${\alpha}$-amylase, glucoamylase, acidic protease 등 효소활성과 누룩의 대사산물을 측정하였다. 초기 효소활성은 온도에 상관없이 급격하게 증가하였고 발효 3일 후, TN-A 누룩의 효소활성은 일정하게 유지됐으나 TN-B 누룩은 발효기간이 끝나는 동안 점진적으로 이들 활성이 감소하였다. $^1H$-MNR을 이용한 대사체 분석결과, TN-A 누룩은 glucose, glycerol, fructose, mannitol, lactose가 초기에 급격히 증가한 후 감소하였으나, TN-B 누룩은 초기에 대사체들이 감소한 후, 발효기간 동안 일정하게 유지되었다. Glycine, proline, serine 유리아미노산은 TN-B보다 TN-A 누룩에서 보다 높게 나타났다. 밀누룩 발효시 약 $36^{\circ}C$의 일정한 온도는 전분 및 단백질분해 효소의 높은 활성을 유지하는데 적절하였다.

Keywords

References

  1. Bal J, Yun SH, Song HY, Yeo SH, Kim JH, Kim JM, et al. 2014. Mycoflora dynamics analysis of Korean traditional wheat-based nuruk. J. Microbiol. 52: 1025-1029. https://doi.org/10.1007/s12275-014-4620-0
  2. Bechman A, Phillips RD, Chen J. 2012. Changes in selected physical property and enzyme activity of rice and barley koji during fermentation and storage. J. Food Sci. 77: 318-322. https://doi.org/10.1111/j.1750-3841.2012.02691.x
  3. Brewing Society of Japan. 1993. Regulation for analysis of alcoholic beverages. pp. 221-228.
  4. Choi JS, Jung ST, Kim YJ, Choi JH, Choi HS, Yeo SH. 2011. Quality characteristics of wheat nuruk and optimum condition of liquid starters for Aspergillus sp. Korean J. Microbiol. Biotechnol. 39: 357-363.
  5. Figueiredo IM, Pereira NR, Efraim P, Garcia NH, Rodrigues NR, Marsaioli A Jr, et al. 2006. $^1H$ NMR, a rapid method to monitor organic acids during cupuassu (Theobroma grandiflorum Spreng) processing. J. Agric. Food Chem. 54: 4102-4106. https://doi.org/10.1021/jf0525176
  6. Jang JH. 1989. History of Korea traditional rice wine. Korean J. Diet. Cult. 4: 271-274.
  7. Jung JY, Lee SH, Kim JM, Park MS, Bae JW, Hahn Y, et al. 2011. Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl. Environ. Microbiol. 77: 2264-2274. https://doi.org/10.1128/AEM.02157-10
  8. Jung JY, Lee SH, Lee HJ, Jeon CO. 2013. Microbial succession and metabolite changes during fermentation of saeu-jeot, traditional Korean salted seafood. Food Microbiol. 34: 360-368. https://doi.org/10.1016/j.fm.2013.01.009
  9. Jung JY, Lee SH, Lee HJ, Seo HY, Park WS, Jeon CO. 2012. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. Int. J. Food Microbiol. 153: 378-387. https://doi.org/10.1016/j.ijfoodmicro.2011.11.030
  10. Jung MJ, Nam YD, Roh SW, Bae JW. 2012b. Unexpected convergence of fungal and bacterial communities during fermentation of traditional Korean alcoholic beverages inoculated with various natural starters. Food Microbiol. 30: 112-123. https://doi.org/10.1016/j.fm.2011.09.008
  11. Kim HR, Kim JH, Bai DH, Ahn BH. 2011. Identification and characterization of useful fungi with ${\alpha}$-amylase activity from the Korean traditional nuruk. Microbiol. 39: 278-282.
  12. Lee EJ, Shaykhutdinov R, Weljie AM, Vogel HJ, Facchini PJ, Park SU, et al. 2009. Quality assessment of ginseng by $^1H$-NMR metabolite fingerprinting and profiling analysis. J. Agric. Food Chem. 57: 7513-7522. https://doi.org/10.1021/jf901675y
  13. Lee HJ, Jung JY, OH YK, Lee SS, Madsen EL, Jeon CO. 2012. Comparative survey of rumen microbial communities and metabolites across one caprine and three bovine groups, using bar-coded pyrosequencing and $^1H$ nuclear magnetic resonance spectroscopy. Appl. Environ. Microbiol. 78: 5983-5993. https://doi.org/10.1128/AEM.00104-12
  14. Lee SH, Jung JY, Jeon CO. 2015. Bacterial community dynamics and metabolite changes in myeolchi-aekjeot, a Korean traditional fermented fish sauce, during fermentation. Int. J. Food Microbiol. 203: 15-22. https://doi.org/10.1016/j.ijfoodmicro.2015.02.031
  15. Lee SJ, Cho SW, Kwon YY, Kwon HS, Shin WC. 2014. Inhibitory effects of ethanol extracts from nuruk on oxidative stress, melanogenesis, and photo-aging. Mycobiol. 40: 117-123.
  16. Lotong N, Suwanarit P. 1983. Production of soy sauce koji mold spore inoculum in plastic bags. Appl. Environ. Microbiol. 46: 1224-1226.
  17. Matsushima K, Yashiro K, Hanya Y, Abe K, Yabe K, Hamasaki T. 2001. Absence of aflatoxin biosynthesis in koji mold (Aspergillus sojae). Appl. Microbiol. Biotechnol. 55: 771-776. https://doi.org/10.1007/s002530000524
  18. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, et al. 2015. Package 'vegan'. R package version 2.2-1. Available: http:// cran.r-project.org/package=vegan Accessed 2015 Jan 27.
  19. Shon SK, Rho YH, Kim HJ, Bae SM. 1990. Takju brewing of uncooked rice starch using Rhizopus koji. Korean J. Appl. Microbiol. Biotechnol. 18: 506-510.
  20. Song SH, Lee C, Lee S, Park JM, Lee HJ, Bai DH, et al. 2013. Analysis of microflora profile in Korean traditional nuruk. J. Microbiol. Biotechnol. 23: 40-46. https://doi.org/10.4014/jmb.1210.10001
  21. Tamang JP. 2012. Plant-based fermented foods and beverages of asia, pp. 74. In Hui YH and Evranuz EO (eds.), Handbook of plant-based fermented food and beverage technology, Taylor & Francis, United Kingdom.
  22. The Brewing Society of Japan. 1993. The annotation of the official method of analysis of the national tax administration agency. 4: 218-226.
  23. van Kleeff BH, Kuenen JG, Heijnen JJ. 1993. Continuous measurement of microbial heat production in laboratory fermentors. Biotechnol. Bioeng. 41: 541-549. https://doi.org/10.1002/bit.260410506
  24. Xiao Z, Storms R, Tsang A, 2006. A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities. Anal. Biochem. 351: 146-148. https://doi.org/10.1016/j.ab.2006.01.036
  25. Yang S, Choi SJ, Kwak J, Kim K, Seo M, Moon TW, et al. 2013. Aspergillus oryzae strains isolated from traditional Korean nuruk: fermentation properties and influence on rice wine quality. Food Sci. Biotechnol. 22: 425-432. https://doi.org/10.1007/s10068-013-0097-6
  26. Yang S, Lee J, Kwak J, Kim K, Seo M, Lee YW. 2011. Fungi associated with the traditional starter cultures used for rice wine in Korea. Appl. Biol. Chem. 54: 933-943.
  27. Yang SO, Kim MS, Liu KH, Auh JH, Kim YS, Kwon DY, et al. 2009. Classification of fermented soybean past during fermentation by $^1H$ nuclear magnetic resonance spectroscopy and principal component analysis. Biosci. Biotechnol. Biochem. 73: 502-507. https://doi.org/10.1271/bbb.80467
  28. Yi SD, Yang JS, Lee GH, Choi SH, Oh MJ. 2001. Effects of raw materials and various molds on the production of koji. J. Food Sci. Nutr. 6: 101-106.
  29. Yu TS, Yeo SH, Kim HS. 2004. A new species of hyphomycetes, Aspergillus coreanus sp. nov., isolated from traditional Korean nuruk. J. Microbiol. Biotechnol. 14: 182-187.

Cited by

  1. 누룩으로부터 전분 분해 활성이 우수한 Rhizopus oryzae 균주의 분리 vol.44, pp.3, 2016, https://doi.org/10.4014/mbl.1606.06004
  2. Effects of initial moisture content of Korean traditional wheat-based fermentation starter nuruk on microbial abundance and diversity vol.101, pp.5, 2015, https://doi.org/10.1007/s00253-016-8042-2
  3. Quality characteristics of Nuruk with different water contents during fermentation period vol.25, pp.5, 2015, https://doi.org/10.11002/kjfp.2018.25.5.516
  4. Influence of aflatoxin in Nuruk on the safety of starch‐based alcoholic beverage vol.85, pp.3, 2015, https://doi.org/10.1111/1750-3841.15050