DOI QR코드

DOI QR Code

Viridicatol from Marine-derived Fungal Strain Penicillium sp. SF-5295 Exerts Anti-inflammatory Effects through Inhibiting NF-κB Signaling Pathway on Lipopolysaccharide-induced RAW264.7 and BV2 Cells

  • Received : 2015.06.29
  • Accepted : 2015.08.05
  • Published : 2015.12.31

Abstract

Viridicatol (1) has previously been isolated from the extract of the marine-derived fungus Penicillium sp. SF-5295. In the course of further biological evaluation of this quinolone alkaloid, anti-inflammatory effect of 1 in RAW264.7 and BV2 cells stimulated with lipopolysaccharide (LPS) was observed. In this study, our data indicated that 1 suppressed the expression of well-known pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and consequently inhibited the production of iNOS-derived nitric oxide (NO) and COX-2-derived prostaglandin E2 ($PGE_2$) in LPS stimulated RAW264.7 and BV2 cells. Compound 1 also reduced mRNA expression of pro-inflammatory cytokines such as $interleukin-1{\beta}$ ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). In the further evaluation of the mechanisms of these anti-inflammatory effects, 1 was shown to inhibit nuclear factor-kappa B ($NF-{\kappa}B$) pathway in LPS-stimulated RAW264.7 and BV2 cells. Compound 1 blocked the phosphorylation and degradation of inhibitor kappa B $(I{\kappa}B)-{\alpha}$ in the cytoplasm, and suppressed the translocation of $NF-{\kappa}B$ p65 and p50 heterodimer in nucleus. In addition, viridicatol (1) attenuated the DNA-binding activity of $NF-{\kappa}B$ in LPS-stimulated RAW264.7 and BV2 cells.

Keywords

References

  1. Ingersoll, M. A.; Platt, A. M.; Potteaux, S.; Randolph, G. J. Trends Immunol. 2011, 32, 470-477. https://doi.org/10.1016/j.it.2011.05.001
  2. Sosroseno, W.; Barid, I.; Herminajeng, E.; Susilowati, H. Oral Microbiol. Immunol. 2002, 17, 72-78. https://doi.org/10.1046/j.0902-0055.2001.00091.x
  3. Block, M. L.; Zecca, L.; Hong, J. S. Nat. Rev. Neurosci. 2007, 8, 57-69. https://doi.org/10.1038/nrn2038
  4. Jiang, F.; Ramanathan, A.; Miller, M. T.; Tang, G. Q.; Gale, M. Jr.; Patel, S. S.; Marcotrigiano, J. Nature 2011, 479, 423-427. https://doi.org/10.1038/nature10537
  5. Tsan, M. F.; Gao, B. J. Endotoxin Res. 2007, 13, 6-14. https://doi.org/10.1177/0968051907078604
  6. Yang, Y. Z.; Tang, Y. Z.; Liu, Y. H. J. Ethnopharmacol. 2013, 148, 271-276. https://doi.org/10.1016/j.jep.2013.04.025
  7. Mizuno, T.; Kurotani, T.; Komatsu, Y.; Kawanokuchi, J.; Kato, H.; Mitsuma, N.; Suzumura, A. Neuropharmacology 2004, 46, 404-411. https://doi.org/10.1016/j.neuropharm.2003.09.009
  8. Ivashkiv, L. B. Eur. J. Immunol. 2011, 41, 2477-2481. https://doi.org/10.1002/eji.201141783
  9. Baldwin, A. S. Jr. Annu. Rev. Immunol. 1996, 14, 649-683. https://doi.org/10.1146/annurev.immunol.14.1.649
  10. Mancino, A.; Lawrence, T. Clin. Cancer Res. 2010, 16, 784-789. https://doi.org/10.1158/1078-0432.CCR-09-1015
  11. Bremner, P.; Heinrich, M. J. Pharm. Pharmacol. 2002, 54, 453-472. https://doi.org/10.1211/0022357021778637
  12. Rateb, M. E.; Ebel, R. Nat. Prod. Rep. 2011, 28, 290-334. https://doi.org/10.1039/c0np00061b
  13. Bugni, T. S.; Ireland, C. M. Nat. Prod. Rep. 2004, 21, 143-163. https://doi.org/10.1039/b301926h
  14. Fremlin, L. J.; Piggott, A. M.; Lacey, E.; Capon, R. J. J. Nat. Prod. 2009, 72, 666-670. https://doi.org/10.1021/np800777f
  15. Sohn, J. H.; Lee, Y. R.; Lee, D. S.; Kim, Y. C.; Oh, H. J. Microbiol. Biotechnol. 2013, 23, 1206-1211. https://doi.org/10.4014/jmb.1303.03078
  16. Berridge, M. V.; Tan, A. S. Arch. Biochem. Biophys. 1993, 303, 474-482. https://doi.org/10.1006/abbi.1993.1311
  17. Titheradge, M. A. Methods Mol. Biol. 1998, 100, 83-91.
  18. Karin, M.; Ben-Neriah, Y. Annu. Rev. Immunol. 2000, 18, 621-663. https://doi.org/10.1146/annurev.immunol.18.1.621
  19. Grilli, M.; Chiu, J. J.; Lenardo, M. J. Int. Rev. Cytol. 1993, 143, 1-62. https://doi.org/10.1016/S0074-7696(08)61873-2
  20. Chen, F.; Sun, S. C.; Kuh, D. C.; Gaydos, L. J.; Demers, L. M. Biochem. Biophys. Res. Commun. 1995, 214, 985-992. https://doi.org/10.1006/bbrc.1995.2383
  21. Saleem, M.; Ali, M. S.; Hussain, S.; Jabbar, A.; Ashraf, M.; Lee, Y. S. Nat. Prod. Rep. 2007, 24, 1142-1152. https://doi.org/10.1039/b607254m
  22. Fenical, W.; Jensen, P. R. Nat. Chem. Biol. 2006, 2, 666-673. https://doi.org/10.1038/nchembio841
  23. Lee, D. S.; Ko, W.; Quang, T. H.; Kim, K. S.; Sohn, J. H.; Jang, J. H.; Ahn, J. S.; Kim, Y. C.; Oh, H. Mar. Drugs 2013, 11, 4510-4526. https://doi.org/10.3390/md11114510
  24. Su, X.; Chen, Q.; Chen, W.; Chen, T.; Li, W.; Li, Y.; Dou, X.; Zhang, Y.; Shen, Y.; Wu, H.; Yu, C. Int. Immunopharmacol. 2014, 19, 88-93. https://doi.org/10.1016/j.intimp.2014.01.004
  25. Wei, M. Y.; Yang, R. Y.; Shao, C. L.; Wang, C. Y.; Deng, D. S.; She, Z. G.; Lin, Y. C. Chem. Nat. Compd. 2011, 47, 322-325. https://doi.org/10.1007/s10600-011-9922-4

Cited by

  1. A new rearranged eudesmane sesquiterpene and bioactive sesquiterpenes from the twigs of Lindera glauca (Sieb. et Zucc.) Blume vol.39, pp.12, 2016, https://doi.org/10.1007/s12272-016-0838-1
  2. Marine natural products vol.34, pp.3, 2015, https://doi.org/10.1039/c6np00124f
  3. Phenolic Glycosides from Capsella bursa-pastoris (L.) Medik and Their Anti-Inflammatory Activity vol.22, pp.6, 2015, https://doi.org/10.3390/molecules22061023
  4. A new cerebroside from the twigs of Lindera glauca (Sieb. et Zucc.) Blume vol.74, pp.None, 2015, https://doi.org/10.1016/j.bioorg.2017.07.016
  5. Anti-Inflammatory Phenolic Metabolites from the Edible Fungus Phellinus baumii in LPS-Stimulated RAW264.7 Cells vol.22, pp.10, 2015, https://doi.org/10.3390/molecules22101583
  6. Viridicatol and viridicatin isolated from a shark-gill-derived fungus Penicilliumpolonicum AP2T1 as MMP-2 and MMP-9 inhibitors in HT1080 cells by MAPKs signaling pathway and docking studies vol.28, pp.7, 2019, https://doi.org/10.1007/s00044-019-02358-w
  7. A Review of Anti-Inflammatory Compounds from Marine Fungi, 2000-2018 vol.17, pp.11, 2015, https://doi.org/10.3390/md17110636
  8. Quinolone and isoquinolone alkaloids: the structural-electronic effects and the antioxidant mechanisms vol.31, pp.6, 2020, https://doi.org/10.1007/s11224-020-01602-z
  9. In Vitro Evaluation of the Photoprotective Potential of Quinolinic Alkaloids Isolated from the Antarctic Marine Fungus Penicillium echinulatum for Topical Use vol.23, pp.3, 2015, https://doi.org/10.1007/s10126-021-10030-x