DOI QR코드

DOI QR Code

Influence of Dilauroyl Peroxide on Mechanical and Thermal Properties of Different Polypropylene Matrices

Dilauroyl Peroxide의 PP에 대한 기계적, 열적 성질 변화

  • Sirin, Kamil (Celal Bayar University, Faculty of Science and Arts, Department of Chemistry) ;
  • Yavuz, Mesut (Celal Bayar University, Faculty of Science and Arts, Department of Chemistry) ;
  • Canli, Murat (Celal Bayar University, Faculty of Science and Arts, Department of Chemistry)
  • Received : 2014.03.11
  • Accepted : 2014.08.06
  • Published : 2015.03.25

Abstract

In this study, the influence of dilauroyl peroxide on mechanical and thermal properties of different polypropylene (PP) matrices was investigated. Polypropylene matrices, different molecular weight isotactic PP containing 0.01, 0.02, 0.04, 0.06, 0.08, and 0.1 wt% of dilauroyl peroxide (DLP) were prepared by using a single-screw extruder. The effect of the visbreaking agent (DLP) on mechanical, physical, thermal and morphological properties of different molecular weight PP had been studied. Mechanical properties (tensile strength at break point, at yield and elongation at break point), melt flow index (MFI), scanning electron microscope (SEM) and differential scanning calorimetric (DSC) analyses of these matrices were examined. Melting ($T_m$) and crystallization ($T_c$) temperatures, crystallinity ratio (%) and enthalpies were determined. The microstructure of isotactic polypropylene matrix was investigated by scanning electron microscopy (SEM). From SEM analysis, it was observed that the surface disorder increased by the increasing amount of DLP. As a result of DSC analyses, the crystallinity ratio of the PP matrices has varied between 1.64-7.27%. Mechanical properties of the matrices have been improved. Particularly, the mechanical tests of PP have given interesting results when compounded with 0.06-0.08 wt% dilauroyl peroxide (DLP). Mechanical properties and thermal decomposition processes were all changed by increasing the amount of DLP in the matrix structure.

Keywords

Acknowledgement

Supported by : Celal Bayar University

References

  1. F. H. Su and H. X. Huang, Adv. Polym. Technol., 28, 16 (2009). https://doi.org/10.1002/adv.20146
  2. P. R. S. Leite, S. B. Goares, and A. S. Sirqueira, J. Appl. Polym. Sci., 120, 981 (2011). https://doi.org/10.1002/app.33123
  3. Y. Xu, C. Chen, L. Cao, and X. Cao, Mater. Chem. Phys., 138, 63 (2013). https://doi.org/10.1016/j.matchemphys.2012.10.034
  4. S. H. Ahn and D. S. Kim, Polymer(Korea), 38, 129 (2014).
  5. X. Chena and C. Jiaoa, Polym. Adv. Technol., 22, 817 (2011). https://doi.org/10.1002/pat.1583
  6. T. N. Iana, X. Wena, J. Gonga, L. Maa, J. Xuea, and T. Tanga, Polym. Adv. Technol., 24, 653 (2013).
  7. K. Choi, H. S. Lee, B. C. Kang, and H. Yang, Polymer(Korea), 34, 294 (2010).
  8. H. Azizi and I. Ghasemi, Polym. Test., 23, 137 (2004). https://doi.org/10.1016/S0142-9418(03)00072-2
  9. B. Kalantari, R. S. Rahbar, M. R. M. Mojtahedi, S. A. M. Shoushtari, and A. Khosroshahi, J. Appl. Polym. Sci., 105, 2287 (2007). https://doi.org/10.1002/app.26255
  10. E. S. G. Cheverrigaray, R. C. D. Cruz, and R. V. B. Oliveira, Polym. Bull., 70, 1237 (2013). https://doi.org/10.1007/s00289-012-0845-4
  11. C. J. Perez, M. D. Failla, and J. M. Carella, Polym. Degrad. Stab., 98, 177 (2013). https://doi.org/10.1016/j.polymdegradstab.2012.10.012
  12. H. Azizi, I. Ghasemi, and M. Karrabi, Polym. Test., 27, 548 (2008). https://doi.org/10.1016/j.polymertesting.2008.02.004
  13. M. Aubert, M. Roth, R. Pfaendner, and C. E. Wilen, Macromol. Mater. Eng., 292, 707 (2007). https://doi.org/10.1002/mame.200600498
  14. P. D. Iedema, K. Remerie, M. vanderHam, E. Biemond, and J. Tacx, Chem. Eng. Sci., 66, 5474 (2011). https://doi.org/10.1016/j.ces.2011.06.071
  15. Y. W. Seo and D. S. Kim, Polymer(Korea), 38, 327 (2014).
  16. K. irin and M. Balcan, Polym. Adv. Tech., 21, 250 (2010).
  17. H. G. Karain, Handbook of Polypropylene and Polypropylene Composites, Second Edition, Marcel Dekker, Inc., New York, 2003.
  18. R. O. Ebewele, Polymer Science and Technology, CRC Press, Boca Raton, FL, 2000.
  19. J. Brandrup, E. H. Immergut, E. A. Grulke, A. Abe, and D. R. Bloch, Polymer Handbook, Fourth Edition, John Wiley and Sons, New York, 2005.
  20. D. Tripathi, Practical Guide to Polypropylene, Rapra Technology, Ltd., p 32 (2002).
  21. D. Munteanu, Plastic Additives Handbook, Hanser, Munich-Cincinnati, 2001.
  22. M. Cook and J. F. Harper, Polym. Adv. Technol., 17, 53 (1998). https://doi.org/10.1002/(SICI)1098-2329(199821)17:1<53::AID-ADV5>3.0.CO;2-H
  23. M. Fujiyama and T. Wakino, J. Appl. Polym. Sci., 42, 2739 (1991). https://doi.org/10.1002/app.1991.070421012
  24. F. Rybnikar, J. Appl. Polym. Sci., 38, 1479 (1989). https://doi.org/10.1002/app.1989.070380806
  25. H. Xia, Q. Wang, K. Li, and G. H. Hu, J. Appl. Polym. Sci., 93, 378 (2004). https://doi.org/10.1002/app.20435
  26. K. irin, F. Do an, M. Canl , and M. Yavuz, Polym. Adv. Technol., 24, 715 (2013). https://doi.org/10.1002/pat.3135
  27. A. Turner-Jones, J. M. Aizlewood, and D. R. Beckett, Makromol. Chem., 75, 134 (1964). https://doi.org/10.1002/macp.1964.020750113

Cited by

  1. Influence of Different Types of Peroxides on the Long-Chain Branching of PP via Reactive Extrusion vol.12, pp.4, 2020, https://doi.org/10.3390/polym12040886