
 Seokil Song : Distributed Indexing Methods for Moving Objects based on Spark Stream 69

International Journal of Contents, Vol.11, No.1, Mar. 2015

Distributed Indexing Methods for Moving Objects based on Spark Stream

Yunsou Lee
DataStreams R&D Center

Sampyeong-dong Bundang-gu, Songnam-si, Gyeonggi-do, 463-400 Republic of Korea

Seokil Song
Department of Computer Engineering

Korea National University of Transportation, 50 Daehak-ro, Chungju-si, 380-702, Republic of Korea

ABSTRACT

Generally, existing parallel main-memory spatial index structures to avoid the trade-off between query freshness and CPU cost uses
light-weight locking techniques. However, still, the lock based methods have some limits such as thrashing which is a well-known
problem in lock based methods. In this paper, we propose a distributed index structure for moving objects exploiting the
parallelism in multiple machines. The proposed index is a lock free multi-version concurrency technique based on the D-Stream
model of Spark Stream. The proposed method exploits the multiversion nature of D-Stream of Spark Streaming.

Key words: Moving Objects, Spark, Steaming, Index.

1. INTRODUCTION

 For the several years, as the mobile devices such as
smartphones and tablet PCs have been prevalent, GPS
technologies and the communication infrastructure enable the
geo-positioning of the mobile devices. As a result of this
development, mobile location-based services stand out as a
particularly successful class of Internet applications.
Subsequently, server-side technologies to process massive,
location-related query and update workloads caused by large
populations of users (moving objects) have been crucial.

Usually, moving objects periodically send their positions
to servers. If an application needs more accurate positions of
moving objects, the transmission period should be shorter. If
the number of moving objects or the required accuracy is
increased, the server’s workload, also, is increased. For
example, when the number of moving objects is 6M and the
transmission period is 1 minutes, the server’s workload is 0.1M
updates per second. At the server, this results in one update
every 10 microseconds.

Such server workloads is not able to be processed by disk
based data structures and algorithms. Several in-memory
indexing techniques for moving objects have been proposed as
the alternatives of disk based techniques [1]-[4]. The versatile
and query efficient R-tree was made cache-conscious [1] to
optimize the use of the fast CPU caches. MOVIES [3] is based

* Corresponding author, Email: sisong@ut.ac.kr
Manuscript received Mar. 09, 2015; revised Mar. 18, 2015;
accepted Mar. 25, 2015

on frequently building short-lived throwaway indexes where
the query result staleness is traded for both update and query
efficiency.

Also, [4] proposed a main memory index that is capable of
exploiting the inherent parallelism available in modern
multicore processors. The main challenge of [4] is to avoid the
contention between queries and updates that conventional
indexing and locking techniques use in order to maintain a
consistent database state and return correct query results. It
propose a new parallel main-memory spatial index structure
that avoids the trade-off between query freshness and CPU cost.
In order to achieve this, it uses techniques that enable light-
weight locking, thus locking as little data as possible for as
short time as possible, and avoiding the overhead of heavy-
weight locks

However, we believe that the lock based methods have
some limits. Thrashing is a well-known problem in lock based
methods. Also, we believe throughput can be increased by
exploiting the parallelism with multiple machines, not only
multicore processors. In this paper, we propose a distributed
index structure for moving objects exploiting the parallelism in
multiple machines. Also, the proposed index structure is not
based on locking techniques to increase throughputs.

The proposed indexing method is based on Spark Stream
[5]. Spark Stream runs each streaming computation as a series
of deterministic batch computations on small time intervals.
The time intervals are as low as half a second, and end-to-end
latencies below a second. This model is called as discretized
streams (D-Streams). D-Streams execute computations as a
series of short, stateless, deterministic tasks. They then

http://dx.doi.org/10.5392/IJoC.2015.11.1.069

70 Seokil Song : Distributed Indexing Methods for Moving Objects based on Spark Stream

International Journal of Contents, Vol.11, No.1, Mar. 2015

represent state across tasks as fault-tolerant data structures
(RDDs) that can be recomputed deterministically. This enables
efficient recovery techniques like parallel recovery and
speculation. Beyond fault tolerance, this model yields other
important benefits, such as clear consistency semantics, a
simple API, and unification with batch processing.

This paper is organized as follows. In Chapter 2,
descriptions of Spark, Spark Streaming and existing
distributed/parallel index structures for moving objects. In
Chapter 3, we propose a new distributed index structure for
moving objects based on Spark Streaming. Then we conclude
this paper in Chapter 4.

2. RELATED WORK

Our proposed distributed index structure for moving
objects is based on Spark Streaming. The proposed method
uses D-Streams approach to process location data stream of
moving objects. Therefore, we describe the Spark Streaming in
more detail in this section. Also, existing parallel index
structures with multi-cores and distributed index structures with
multi-nodes will be described.

2.1 Spark and Spark Stream

Apache Spark is an open source and general-purpose
engine for large-scale data processing system developed by the
UC Berkeley AMP laboratory. It was designed to provide fast
and interactive data analysis as an alternative to Hadoop
MapReduce. Apache Spark provides primitives for in-memory
cluster computing so as to avoid the I/O bottleneck occurred
when Hadoop MapReduce repeatedly performs computations
for jobs.

In order to provide its performance while retaining the
fault-tolerance, locality, and scalability properties of
MapReduce, Apache Spark proposed a memory abstraction
which is called a Resilient Distributed Dataset (RDD). Existing
key-value stores and databases that allow fine-grained updates
to mutable state force to replicate data or log across nodes for
fault tolerance. These approaches incur overhead for a data-
intensive workload. On the other hand, RDDs only allow
coarse-grained updates that apply the same operation to many
data items (such as map, filter, or join). This approach allows
Apache Spark to provide fault-tolerance through recording
lineages, which is the history of operations used to build a
current dataset.

Apache Spark also provides additional fault tolerance by
allowing a user to specify a persistence condition on any
transformation which causes it to immediately write to disk.
Data locality is maintained by allowing users to control data
partitioning based on a key in each record. Apache Spark
Streaming is the extension of Apache Spark to process stream
data. It divides the live data stream into small batches of sub-
seconds. The divided small batches are treated as RDDs, and
they are processed by RDD operations. This approach of Spark
Streaming is called as Discretized Stream (D-Stream). D-
Stream can be recovered by the same recovery mechanisms of
RDDs at a much smaller timescale.

Spark Streaming provides two types of operators to let
users build streaming programs. Transformation operators
produce a new D-Stream from one or more parent streams.
These can be either stateless (i.e., only for each interval) or
stateful (across intervals). Output operators write data to
external systems such as HDFS. Also, Spark Streaming
supports the same stateless transformations available in typical
batch frameworks.

2.2 Distributed index structures for moving objects on
multiple machines

Recently, several studies to process spatial queries based
on MapReduce have been proposed. ToSS-it proposed in [6] is
a cloud-based index structure. It generates a new index when
every location change of the moving objects is updated. Also,
ToSS-it employs inter-node and intra-node multi-core
parallelism paradigm to build a new index rapidly. [7] proposed
kNN join methods based on MapReduce. In this method, the
mappers cluster objects into groups and the reducers perform
the kNN join on each group of objects separately. In study [8],
exact and approximate algorithms in MapReduce to perform
efficient parallel kNN joins on large data have been proposed.
[8] first proposed block-nested-loop-join (BNLJ) and its
improved version using the R-tree indices. Second, it proposed
a MapReduce based approximate algorithm that uses space-
filling curves (z-values), and transforms kNN joins into a
sequence of one-dimensional range searches.

2.3 Parallel index structures for moving objects on single
machine

PGrid proposed in [4] is a parallel main memory index
structure to process location based query and update workloads
populated by very large moving objects. It uses a grid structure
to maximize the parallelism of modern processors. PGrid
supports long-running queries and rapid updates on a single
data structure unlike existing methods that use different data
structures for updates and queries.

[4] claims that existing methods that use snapshots have
some problems such as stale query results, CPU waste on full
snapshots, stop-the-world problem and so on. In order to avoid
these problems, the concurrency control method of PGrid is
based on hardware-assisted atomic updates and object-level
copy. Also, update operations are treated as atomic operations.

There are some studies that exploit the parallelism of GPU
(Graphic Processing Unit) [9]-[11]. [11] proposed the repeated
processing method for huge amounts of k nearest neighbours
(k-NN) queries over massive sets of moving objects, where the
spatial range of queries and the position of objects are
continuously modified over time. This method uses a hybrid
CPU/GPU pipeline that significantly enhance k-NN query
processing. In [9], an indexing structure (CKDB-tree) that
combines an adaptive cell and KDB-tree was proposed. This
method, also, uses GPU to provide a scalable solution to
filtering massive steaming location data of moving objects. [10]
investigated the use of GPUs to solve a data-intensive problem
that involves huge amounts of moving objects. In this study,
the time is partitioned into ticks, and the parallel processing of
location updates and range queries occurring in a given tick to

 Seokil Song : Distributed Indexing Methods for Moving Objects based on Spark Stream 71

International Journal of Contents, Vol.11, No.1, Mar. 2015

the next tick defer is deferred so as to delay slightly the overall
computation.

3. PROPOSED DISTRIBUTED INDEXING METHOD

FOR MOVING OBJECTS

As mentioned earlier, the proposed distributed indexing
method is based on D-Stream model of Spark Streaming. D-
Streams provide two types of operators to let users build
streaming applications. One is transformation operators. They
produce a new D-Stream from one or more parent streams.
These can be either stateless (i.e., act independently on each
interval) or stateful (share data across intervals). The other is
output operators which let the program write data to external
systems (e.g., save each RDD to HDFS). D-Streams support the
same stateless transformations available in Spark such as map,
reduce, groupBy, and join.

The input stream is the postions of moving objects that are
transmitted periodically. Spark Stream transforms the input
stream into D-Streams. As shown in Figure 1, the input
stream is transformed into DSt, DSt+1, DSt+2 and DSt+3
continuously by Spark Stream. The proposed indexing
method perform bulkLoad and bulkInsert operators on each D-
Stream. bulkLoad builds a gird index GIt with position data in
DSt. In our proposed indexing method, we use grid index to
reduce the time for building and updating an index.

Our indexing method does not use lock based concurrency
control method. The D-Stream model of Spark Stream is
immutable, so update operations and search operations are not
performed concurrently on an index. As shown in Fig. 1, an
index is updated by bulkLoad and bulkInsert operators, and
multiple versions of the index at time t, t+1, t+2 an t+3, which
can be accessed by users, are on main memory. Therefore,
users can access GIt+2, while GIt+3 is being built.

Fig. 1. Build grid index with input stream

The proposed indexing method add some transformation

operators and output operators to Spark Stream for indexing
and querying moving objects. Table 1 shows our new operators.
Our indexing method provides three transform operators and

one output operator. In the table, DSt means that D-Stream at
time t and GIt means that a grid index at time t.

Table 1. Operators of proposed indexing method

Operators Function

bulkLoad
(transform)

Build an initial index and transform DSt into
GIt

bulkInsert
(transform)

Insert a set of position data into an index and
transform GIt with DSt+1 into GIt+1

splitIndex
(transform)

Split an index into two according to time and
transform GIt into GIt_upper and GIt_lower

search
(output)

Operators for querying such as range queries
and KNN queries

The proposed indexing method add some transformation

operators and output operators to Spark Stream for indexing
and querying moving objects. Table 1 shows our new operators.
Our indexing method provides three transform operators and
one output operator. In the table, DSt means that D-Stream at
time t and GIt means that a grid index at time t.

We will describe our proposed method with an example.
As shown in Fig. 2, the proposed index method consists of time
index, gird index and RDD store. Location data of moving
objects are divided into small RDDs by Spark Streaming
according to a time window, and stored in RDD store. Grid
index manages the locations of each objects on the two
dimensional grid. Actually, as shown in Fig. 3, Grid index is a
list of RDDs whose index numbers are uniquely assigned
numbers to cells on the gird. An item of Grid index is RDD
numbers that contains moving objects on a corresponding cell.
As shown in the figure, the first item of Grid index 1 is R1 and
R2 which means RDD1 and RDD2 of RDD Store respectively.
It means that location data 1, 4 of RDD1 and 1 of RDD2 are on
the cell 1 of Grid index 1.

Fig. 2. Architecture of proposed indexing method and an

example with 2 moving objects

Time index manages the time interval that each Grid index
covers. In Fig. 2, generated RDDs from t1 to t4 are indexed in
Grid index 1. After new location data of moving objects are
received and new RDDs 3, 4 are generated, Grid index 2 is
created to index the new RDDs. Then in Time index Grid index

72 Seokil Song : Distributed Indexing Methods for Moving Objects based on Spark Stream

International Journal of Contents, Vol.11, No.1, Mar. 2015

2 is inserted. In the proposed indexing method, Grid index and
Time index also RDDs. Thus when updates are required, new
index are generated as RDDs.

Fig. 3. Architecture of proposed indexing method and an

example with 2 moving objects

4. CONCLUSIONS

The proposed distributed indexing method for moving
objects based on Spark Stream. The proposed indexing method
consists of time index, gird index and RDD store. Time index
and grid index are also RDDs in our method. The versions of
them are maintained on the memory. With this approach we
eliminate lock based concurrency control. Also, we proposed
new transform and output operators for Spark Stream such as
bulkLoad, bulkInsert, splitIndex and search. bulkLoad,
bulkInsert and splitIndex operators are transform operators that
make new RDDs. On the other hand, search is output operator
to return query results to users. In our future work, we will
implement the proposed operators based on Spark Stream and
perform various experiments.

ACKNOWLEDGEMENT

This research was jointly supported by the Basic Science

Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education, Science,
and Technology (NRF-2014R1A1A2059342)

REFERENCES

[1] K. Kim, S. K. Cha, and K. Kwon, “Optimizing
Multidimensional Index Trees for Main Memory Access,”
SIGMOD Rec., vol. 30, no. 2, 2001, pp. 139-150.

[2] L. Biveinis, S. Saltenis, and C. S. Jensen, “Main-memory
Operation Buffering for Efficient R-tree Update,” Proc.
VLDB, 2007, pp. 591-602.

[3] J. Dittrich, L. Blunschi, and M. A. V. Salles, “Indexing
Moving Objects using Short-lived Throwaway Indexes,”
Proc. SSTD, 2009, pp. 189-207.

[4] D. Šidlauskas, S. Šaltenis, and C. S. Jensen, “Parallel Main-
memory Indexing for Moving-object Query and Update
Workloads,” Proc. ACM SIGMOD, 2012, pp. 37-48.

[5] M. Zaharia, et al, “Discretized Streams: An Efficient and
Fault-tolerant Model for Stream Processing on Large
Clusters.” Proc. USENIX on Hot Topics in Cloud
Computing, 2012, p. 10.

[6] A. Akdogan, C. Shahabi, and U. Demiryurek, “ToSS-it: A
Cloud-Based Throwaway Spatial Index Structure for
Dynamic Location Data”, Proc. MDM, 2014, pp. 249-258.

[7] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient
Processing of k Nearest Neighbor Joins using
MapReduce,” Proc. VLDB, 2012, pp. 1016-1027.

[8] C. Zhang, F. Li, and J. Jestes, “Efficient parallel kNN
Joins for Large Data in MapReduce,” Proc. EDBT, 2012,
pp. 38-39.

[9] Z. Deng, X. Wu, L. Wang, X. Chen, R. R. Zomaya, and A.
Dan Chen, “Parallel Processing of Dynamic Continuous
Queries over Streaming Data Flows,” IEEE Transactions
on Parallel and Distributed Systems, vol. 26, issue 3,
2015 , pp. 834-846.

[10] C. S. Jensen, “GPU-Based Computing of Repeated Range
Queries over Moving Objects,” Proc. Euromicro
International Conference on Parallel, Distributed and
Network-Based Processing, 2014, pp. 640-647.

[11] F. Lettich, S. Orlando, C. Silvestri, and C. S. Jensen,
“Manycore Processing of Repeated Range Queries over
Massive Moving,” CoRR, 2014.

Yunsou Lee
He received the BS and MS degrees in
Computer Engineering Department from
Korea National University of Korea,
Republic of Korea in 2013 and 2015
respectively. He is a researcher of
Datastreams, Republic of Korea. His
research interests are database systems,

storage systems and so on

Seokil Song
He received the BS, MS and PhD degrees
in Computer and Communication
Department from Chungbuk National
University of South Korea in 1998, 2000
and 2003, respectively. He is an
Associate Professor of the Computer
Engineering Department, Korea National

University of Transportation, Republic of Korea. His research
interests are database systems, index structures, concurrency
control, storage systems, sensor network and XML database.

