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ABSTRACT 
 

Generally, existing parallel main-memory spatial index structures to avoid the trade-off between query freshness and CPU cost uses 
light-weight locking techniques. However, still, the lock based methods have some limits such as thrashing which is a well-known 
problem in lock based methods.  In this paper, we propose a distributed index structure for moving objects exploiting the 
parallelism in multiple machines. The proposed index is a lock free multi-version concurrency technique based on the D-Stream 
model of Spark Stream. The proposed method exploits the multiversion nature of D-Stream of Spark Streaming. 
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1. INTRODUCTION 
 

 For the several years, as the mobile devices such as 
smartphones and tablet PCs have been prevalent, GPS 
technologies and the communication infrastructure enable the 
geo-positioning of the mobile devices. As a result of this 
development, mobile location-based services stand out as a 
particularly successful class of Internet applications. 
Subsequently, server-side technologies to process massive, 
location-related query and update workloads caused by large 
populations of users (moving objects) have been crucial.  

Usually, moving objects periodically send their positions 
to servers. If an application needs more accurate positions of 
moving objects, the transmission period should be shorter. If 
the number of moving objects or the required accuracy is 
increased, the server’s workload, also, is increased. For 
example, when the number of moving objects is 6M and the 
transmission period is 1 minutes, the server’s workload is 0.1M 
updates per second. At the server, this results in one update 
every 10 microseconds.  

Such server workloads is not able to be processed by disk 
based data structures and algorithms. Several in-memory 
indexing techniques for moving objects have been proposed as 
the alternatives of disk based techniques [1]-[4]. The versatile 
and query efficient R-tree was made cache-conscious [1] to 
optimize the use of the fast CPU caches. MOVIES [3] is based 
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on frequently building short-lived throwaway indexes where 
the query result staleness is traded for both update and query 
efficiency.  

Also, [4] proposed a main memory index that is capable of 
exploiting the inherent parallelism available in modern 
multicore processors. The main challenge of [4] is to avoid the 
contention between queries and updates that conventional 
indexing and locking techniques use in order to maintain a 
consistent database state and return correct query results. It 
propose a new parallel main-memory spatial index structure 
that avoids the trade-off between query freshness and CPU cost. 
In order to achieve this, it uses techniques that enable light-
weight locking, thus locking as little data as possible for as 
short time as possible, and avoiding the overhead of heavy-
weight locks 

However, we believe that the lock based methods have 
some limits. Thrashing is a well-known problem in lock based 
methods.  Also, we believe throughput can be increased by 
exploiting the parallelism with multiple machines, not only 
multicore processors. In this paper, we propose a distributed 
index structure for moving objects exploiting the parallelism in 
multiple machines. Also, the proposed index structure is not 
based on locking techniques to increase throughputs.  

The proposed indexing method is based on Spark Stream 
[5]. Spark Stream runs each streaming computation as a series 
of deterministic batch computations on small time intervals. 
The time intervals are as low as half a second, and end-to-end 
latencies below a second. This model is called as discretized 
streams (D-Streams). D-Streams execute computations as a 
series of short, stateless, deterministic tasks. They then 
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represent state across tasks as fault-tolerant data structures 
(RDDs) that can be recomputed deterministically. This enables 
efficient recovery techniques like parallel recovery and 
speculation. Beyond fault tolerance, this model yields other 
important benefits, such as clear consistency semantics, a 
simple API, and unification with batch processing. 

This paper is organized as follows. In Chapter 2, 
descriptions of Spark, Spark Streaming and existing 
distributed/parallel index structures for moving objects. In 
Chapter 3, we propose a new distributed index structure for 
moving objects based on Spark Streaming. Then we conclude 
this paper in Chapter 4.  

 
 

2. RELATED WORK 
 

Our proposed distributed index structure for moving 
objects is based on Spark Streaming. The proposed method 
uses D-Streams approach to process location data stream of 
moving objects. Therefore, we describe the Spark Streaming in 
more detail in this section. Also, existing parallel index 
structures with multi-cores and distributed index structures with 
multi-nodes will be described. 
 
2.1 Spark and Spark Stream 

Apache Spark is an open source and general-purpose 
engine for large-scale data processing system developed by the 
UC Berkeley AMP laboratory. It was designed to provide fast 
and interactive data analysis as an alternative to Hadoop 
MapReduce. Apache Spark provides primitives for in-memory 
cluster computing so as to avoid the I/O bottleneck occurred 
when Hadoop MapReduce repeatedly performs computations 
for jobs.  

In order to provide its performance while retaining the 
fault-tolerance, locality, and scalability properties of 
MapReduce, Apache Spark proposed a memory abstraction 
which is called a Resilient Distributed Dataset (RDD). Existing 
key-value stores and databases that allow fine-grained updates 
to mutable state force to replicate data or log across nodes for 
fault tolerance.  These approaches incur overhead for a data-
intensive workload.  On the other hand, RDDs only allow 
coarse-grained updates that apply the same operation to many 
data items (such as map, filter, or join). This approach allows 
Apache Spark to provide fault-tolerance through recording 
lineages, which is the history of operations used to build a 
current dataset.  

Apache Spark also provides additional fault tolerance by 
allowing a user to specify a persistence condition on any 
transformation which causes it to immediately write to disk.  
Data locality is maintained by allowing users to control data 
partitioning based on a key in each record.  Apache Spark 
Streaming is the extension of Apache Spark to process stream 
data. It divides the live data stream into small batches of sub-
seconds. The divided small batches are treated as RDDs, and 
they are processed by RDD operations. This approach of Spark 
Streaming is called as Discretized Stream (D-Stream). D-
Stream can be recovered by the same recovery mechanisms of 
RDDs at a much smaller timescale.  

Spark Streaming provides two types of operators to let 
users build streaming programs. Transformation operators 
produce a new D-Stream from one or more parent streams. 
These can be either stateless (i.e., only for each interval) or 
stateful (across intervals). Output operators write data to 
external systems such as HDFS. Also, Spark Streaming 
supports the same stateless transformations available in typical 
batch frameworks. 

 
2.2 Distributed index structures for moving objects on 
multiple machines 

Recently, several studies to process spatial queries based 
on MapReduce have been proposed. ToSS-it proposed in [6] is 
a cloud-based index structure. It generates a new index when 
every location change of the moving objects is updated. Also, 
ToSS-it employs inter-node and intra-node multi-core 
parallelism paradigm to build a new index rapidly. [7] proposed 
kNN join methods based on MapReduce. In this method, the 
mappers cluster objects into groups and the reducers perform 
the kNN join on each group of objects separately. In study [8], 
exact and approximate algorithms in MapReduce to perform 
efficient parallel kNN joins on large data have been proposed. 
[8] first proposed block-nested-loop-join (BNLJ) and its 
improved version using the R-tree indices. Second, it proposed 
a MapReduce based approximate algorithm that uses space-
filling curves (z-values), and transforms kNN joins into a 
sequence of one-dimensional range searches.  

 
2.3 Parallel index structures for moving objects on single 
machine 

PGrid proposed in [4] is a parallel main memory index 
structure to process location based query and update workloads 
populated by very large moving objects. It uses a grid structure 
to maximize the parallelism of modern processors. PGrid 
supports long-running queries and rapid updates on a single 
data structure unlike existing methods that use different data 
structures for updates and queries.  

[4] claims that existing methods that use snapshots have 
some problems such as stale query results, CPU waste on full 
snapshots, stop-the-world problem and so on. In order to avoid 
these problems, the concurrency control method of PGrid is 
based on hardware-assisted atomic updates and object-level 
copy. Also, update operations are treated as atomic operations. 

There are some studies that exploit the parallelism of GPU 
(Graphic Processing Unit) [9]-[11]. [11] proposed the repeated 
processing method for huge amounts of k nearest neighbours 
(k-NN) queries over massive sets of moving objects, where the 
spatial range of queries and the position of objects are 
continuously modified over time. This method uses a hybrid 
CPU/GPU pipeline that significantly enhance k-NN query 
processing. In [9], an indexing structure (CKDB-tree) that 
combines an adaptive cell and KDB-tree was proposed. This 
method, also, uses GPU to provide a scalable solution to 
filtering massive steaming location data of moving objects. [10] 
investigated the use of GPUs to solve a data-intensive problem 
that involves huge amounts of moving objects. In this study, 
the time is partitioned into ticks, and the parallel processing of 
location updates and range queries occurring in a given tick to 
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the next tick defer is deferred so as to delay slightly the overall 
computation. 

 
 
3. PROPOSED DISTRIBUTED INDEXING METHOD 

FOR MOVING OBJECTS 
 

As mentioned earlier, the proposed distributed indexing 
method is based on D-Stream model of Spark Streaming. D-
Streams provide two types of operators to let users build 
streaming applications. One is transformation operators. They 
produce a new D-Stream from one or more parent streams. 
These can be either stateless (i.e., act independently on each 
interval) or stateful (share data across intervals). The other is 
output operators which let the program write data to external 
systems (e.g., save each RDD to HDFS). D-Streams support the 
same stateless transformations available in Spark such as map, 
reduce, groupBy, and join.  

The input stream is the postions of moving objects that are 
transmitted periodically. Spark Stream transforms the input 
stream into D-Streams.  As shown in Figure 1, the input 
stream is transformed into DSt, DSt+1, DSt+2 and DSt+3 
continuously by Spark Stream.  The proposed indexing 
method perform bulkLoad and bulkInsert operators on each D-
Stream. bulkLoad builds a gird index GIt with position data in 
DSt. In our proposed indexing method, we use grid index to 
reduce the time for building and updating an index.  

Our indexing method does not use lock based concurrency 
control method. The D-Stream model of Spark Stream is 
immutable, so update operations and search operations are not 
performed concurrently on an index.  As shown in Fig. 1, an 
index is updated by bulkLoad and bulkInsert operators, and 
multiple versions of the index at time t, t+1, t+2 an t+3, which 
can be accessed by users, are on main memory. Therefore, 
users can access GIt+2, while GIt+3 is being built. 

 

 
Fig. 1. Build grid index with input stream 

 
The proposed indexing method add some transformation 

operators and output operators to Spark Stream for indexing 
and querying moving objects. Table 1 shows our new operators. 
Our indexing method provides three transform operators and 

one output operator. In the table, DSt means that D-Stream at 
time t and GIt means that a grid index at time t. 

 
Table 1. Operators of proposed indexing method 

Operators Function 

bulkLoad 
(transform)

Build an initial index and transform DSt into 
GIt 

bulkInsert 
(transform)

Insert a set of position data into an index and 
transform GIt with DSt+1 into GIt+1 

splitIndex 
(transform)

Split an index into two according to time and 
transform GIt into GIt_upper and GIt_lower  

search 
(output) 

Operators for querying such as range queries 
and KNN queries 

 
The proposed indexing method add some transformation 

operators and output operators to Spark Stream for indexing 
and querying moving objects. Table 1 shows our new operators. 
Our indexing method provides three transform operators and 
one output operator. In the table, DSt means that D-Stream at 
time t and GIt means that a grid index at time t. 

We will describe our proposed method with an example. 
As shown in Fig. 2, the proposed index method consists of time 
index, gird index and RDD store. Location data of moving 
objects are divided into small RDDs by Spark Streaming 
according to a time window, and stored in RDD store. Grid 
index manages the locations of each objects on the two 
dimensional grid. Actually, as shown in Fig. 3, Grid index is a 
list of RDDs whose index numbers are uniquely assigned 
numbers to cells on the gird. An item of Grid index is RDD 
numbers that contains moving objects on a corresponding cell. 
As shown in the figure, the first item of Grid index 1 is R1 and 
R2 which means RDD1 and RDD2 of RDD Store respectively. 
It means that location data 1, 4 of RDD1 and 1 of RDD2 are on 
the cell 1 of Grid index 1.  
 

 
Fig. 2. Architecture of proposed indexing method and an 

example with 2 moving objects 
 

Time index manages the time interval that each Grid index 
covers. In Fig. 2, generated RDDs from t1 to t4 are indexed in 
Grid index 1. After new location data of moving objects are 
received and new RDDs 3, 4 are generated, Grid index 2 is 
created to index the new RDDs. Then in Time index Grid index 
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2 is inserted. In the proposed indexing method, Grid index and 
Time index also RDDs. Thus when updates are required, new 
index are generated as RDDs.  
 

 
Fig. 3. Architecture of proposed indexing method and an 

example with 2 moving objects 
 
 

4. CONCLUSIONS 
 

The proposed distributed indexing method for moving 
objects based on Spark Stream. The proposed indexing method 
consists of time index, gird index and RDD store. Time index 
and grid index are also RDDs in our method. The versions of 
them are maintained on the memory. With this approach we 
eliminate lock based concurrency control. Also, we proposed 
new transform and output operators for Spark Stream such as 
bulkLoad, bulkInsert, splitIndex and search.  bulkLoad, 
bulkInsert and splitIndex operators are transform operators that 
make new RDDs. On the other hand, search is output operator 
to return query results to users. In our future work, we will 
implement the proposed operators based on Spark Stream and 
perform various experiments. 
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