DOI QR코드

DOI QR Code

Genetic characterization of microsporidians infecting Indian non-mulberry silkworms (Antheraea assamensis and Samia cynthia ricini) by using PCR based ISSR and RAPD markers assay

  • Hassan, Wazid (Molecular Pathology Division, Seribiotech Research Laboratory, Central Silk Board, CSB Campus) ;
  • Nath, B. Surendra (Molecular Pathology Division, Seribiotech Research Laboratory, Central Silk Board, CSB Campus)
  • Received : 2015.01.09
  • Accepted : 2015.03.27
  • Published : 2015.03.31

Abstract

This study established the genetic characterisation of 10 microsporidian isolates infecting non-mulberry silkworms (Antheraea assamensis and Samia cynthia ricini) collected from biogeographical forest locations in the State of Assam, India, using PCR-based markers assays: inter simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD). A Nosema type species (NIK-1s_mys) was used as control for comparison. The shape of mature microsporidian spores were observed oval to elongated, measuring 3.80 to $4.90{\mu}m$ in length and 2.60 to $3.05{\mu}m$ in width. Fourteen ISSR primers generated reproducible profiles and yielded 178 fragments, of which 175 were polymorphic (98%), while 16 RAPD primers generated reproducible profiles with 198 amplified fragments displaying 95% of polymorphism. Estimation of genetic distance coefficients based on dice coefficients method and clustering with un-weighted pair group method using arithmetic average (UPGMA) analysis was done to unravel the genetic diversity of microsporidians infecting Indian muga and eri silkworm. The similarity coefficients varied from 0.385 to 0.941 in ISSR and 0.083 to 0.938 in RAPD data. UPGMA analysis generated dendrograms with two microsporidian groups, which appear to be different from each other. Based on Euclidean distance matrix method, 2-dimensional distribution also revealed considerable variability among different identified microsporidians. Clustering of these microsporidian isolates was in accordance with their host and biogeographic origin. Both techniques represent a useful and efficient tool for taxonomical grouping as well as for phylogenetic classification of different microsporidians in general and genotyping of these pathogens in particular.

Keywords

References

  1. Baker MD, Vossbrinck CR, Didier ES, Maddox JV, Shadduck JA (1995) Small subunit ribosomal DNA phylogeny of various microsporidia with emphasis on AIDS related forms. J Eukaryot Microbiol 42, 564-570. https://doi.org/10.1111/j.1550-7408.1995.tb05906.x
  2. Bretagne S, Costa JM, Besmond C, Carsique R, Calderone R (1997) Microsatellite polymorphism in the promoter sequence of the elongation factor 3 gene of Candida albicans as the basis for a typing system. J Clin Microbiol 35, 1777-1780.
  3. Brooks WM, Cranford JD (1972) Microsporidoses of the hymenopterous parasites, Campoletis sonorensis and Cardiochiles nigriceps, larval parasites of Heliothis species. J Invertebr Pathol 20, 77-94. https://doi.org/10.1016/0022-2011(72)90085-7
  4. Canning EU, Curry A, Cheney SA, Lafranchi-Tristem NJ, Kawakami Y, Hatakeyama Y, Iwano H, Ishihara R (1999) Nosema tyriae n. sp. and Nosema sp. microsporidian parasites of cinnabar moth Tyria jacobaeae. J Invertebr Pathol 74, 29-38. https://doi.org/10.1006/jipa.1999.4861
  5. Dice L R (1945) Measures of the amount of ecological association between species. Ecology 26, 297-302. https://doi.org/10.2307/1932409
  6. Fang DQ, Roose ML, Krueger RR, Federici CT (1997) Fingerprinting trifoliate orange germ plasm accessions with isozymes, RFLPs and inter-simple sequence repeat markers. Theor Appl Genet 95, 211-219. https://doi.org/10.1007/s001220050550
  7. Gur-Arie R, Cohen CJ, Eitan Y, Shelef L, Hallerman EM, Kashi Y (2000) Simple sequence repeats in Escherichia coli: abundance, distribution, composition and polymorphism. Genome Res 10, 62-71.
  8. Hadrys H, Balick M, Schierwater B (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol Ecol 1, 55-63. https://doi.org/10.1111/j.1365-294X.1992.tb00155.x
  9. Hartskeerl RA, Van Gool T, Schuitema AR, Didier ES, Terpstra WJ (1995) Genetic and immunological characterization of the microsporidian Septata intestinalis Cali, Kotter and Orenstein, 1993: reclassification to Encephalitozoon intestinalis. Parasitology 110, 277-285. https://doi.org/10.1017/S0031182000080860
  10. Hassan W, Nath BS, (2014) Genetic diversity and phylogenetic relationships among microsporidian isolates from the Indian tasar silkworm, Antheraea mylitta,as revealed by RAPD fingerprinting technique. Int J Indust Entomol 29(2), 169-178. Doi.org/10.7852/ijie.2014.29.2.169
  11. Hirt RP, Healy B, Vossbrinck CR, Canning EU, Embley TM (1997) Amitochondrial Hsp70 orthologue in Vairimorpha necatrix: molecular evidence that microsporidia once contained mitochondria. Curr Biol 7, 995-998. https://doi.org/10.1016/S0960-9822(06)00420-9
  12. Hung HW, Lo CF, Tseng CC, Peng SE, Chou CM, Kou GH (1998) The small subunit ribosomal RNA gene sequence of Pleistophora anguillarum and the use of PCR primers for diagnostic detection of the parasite. J Eukaryot Microbiol 45, 556-560. https://doi.org/10.1111/j.1550-7408.1998.tb05116.x
  13. Keeling P (2009) Five Questions about Microsporidia. PLoS Pathoglogy 5(9), e1000489. Doi,10.1371/journal.ppat.1000489.
  14. Keeling PJ (2003) Congruent evidence from $\alpha$-tubulin and $\beta$-tubulin gene phylogenies for a zygomycete origin of microsporidia. Funga Genet Biol 38, 298-309. https://doi.org/10.1016/S1087-1845(02)00537-6
  15. Kumar AR, Sathish V, Nair GB, Nagaraju J (2007) Genetic characterization of Vibrio cholerae strains by inter simple sequence repeat-PCR. FEMS. Microbiol Lett 1-8. DOI:10.1111/j.1574-6968.2007.00762.x
  16. Lu R, Rank GH (1996) Use of RAPD analyses to estimate population genetic parameters in the alfalfa leafcutting bee, Megachile rotundata. Genome 39, 655-663. https://doi.org/10.1139/g96-083
  17. Maddox JV, Sprenkel RK (1978) Some enigmatic microsporidia of the genus Nosema. Misc. Pub Entomol Soc Am 11, 65-84.
  18. Malone LA, Wigley PJ (1981) The morphology and development of Nosema carpocapsae, a microsporidian pathogen of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae) in New Zealand. J Invertebr Pathol 38, 315-329. https://doi.org/10.1016/0022-2011(81)90097-5
  19. Mathis A, Michel M, Kuster H, Muller C, Weber R, Deplazes P (1997) Two Encephalitozoon cuniculi strains of human origin are infectious to rabbits. Parasitology 114, 29-35. https://doi.org/10.1017/S0031182096008177
  20. Medeiros J, Tavares J, Simoes N, Solter LF (2004) A new isolate of the microsporidium Vairimorpha necatrix (Microsporidia: Burenellidae) recorded in the azores. J Invertebr Pathol 85, 58-60. https://doi.org/10.1016/j.jip.2003.12.006
  21. Mercer CF, Wigley PJ (1987) A microsporidian pathogen of the poroporo stem borer, Sceliodes cordalis (Dbld) (Lepidoptera: Pyralidae). J Invertbr Pathol 49, 93-101. https://doi.org/10.1016/0022-2011(87)90130-3
  22. Nagaoka T, Oghihara Y (1997) Applicability of inter-simple sequence repeat polymorphism in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet 94, 597-602. https://doi.org/10.1007/s001220050456
  23. Nath BS, Hassan W, Rao SN, Prakash NBV, Gupta SK, Mohanan NM, Bajpai AK (2011) Genetic diversity among microsporidian isolates from the silkworm, Bombyx mori, as revealed by randomly amplified polymorphic DNA (RAPD) markers. Acta Parasitologica 56(4), 333-338.
  24. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76, 5269-5273. https://doi.org/10.1073/pnas.76.10.5269
  25. Raina SN, Rani V, Kojima T, Oghihara Y, Singh KP, Devarumath RM (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification and phylogenetic relationships in parent (Arachis hypogea) cultivars and wild species. Genome 44, 763-772. https://doi.org/10.1139/gen-44-5-763
  26. Rao SN, Nath BS, Saratchandra B (2005) Characterization and phylogenetic relationships among microsporidia infectingsilkworm, Bombyx mori, using inter simple sequence repeat (ISSR) and small subunit rRNA (SSU-rRNA) sequence analysis. Genome 48, 355-366. https://doi.org/10.1139/g04-109
  27. Rao SN, Nath BS, Bhuvaneswari G, Raje US (2007) Genetic diversity and phylogenetic relationships among microsporidia infecting the silkworm, Bombyx mori, using random amplification of polymorphic DNA: Morphological and ultrastructural characterization. J Invertbr Pathol 96, 193-204. https://doi.org/10.1016/j.jip.2007.05.001
  28. Reddy KD, Nagaraju J, Abraham EG (1999) Genetic characterization of the silkworm, Bombyx mori by simple sequence repeat (SSR)-anchored PCR. Heredity 83, 681-687. https://doi.org/10.1046/j.1365-2540.1999.00607.x
  29. Rivera IG, Chowdhury MA, Huq A, Jacobs D, Martins MT, Colwell RR (1995) Enterobacterial repetitive intergenic consensus sequences and the PCR to generate fingerprints of genomic DNAs from Vibrio Cholerae O1, O139, and non-O1 strains. Appl Environ Microbiol 61, 2898-2904.
  30. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. second ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
  31. Shivaji S, Bhanu NV, Aggarwal RK (2000) Identification of Yersinia pestis as the causative organism of plague in India as determined by 16S rDNA sequencing and RAPD-based genomic fingerprinting. FEMS Microbiol Lett 189, 247-252. https://doi.org/10.1111/j.1574-6968.2000.tb09238.x
  32. Sreenu VB, Alevoor V, Nagaraju J, Nagarajaram HA (2003) MICdb: database of prokaryotic microsatellites. Nucleic Acids Res 31, 106-108. https://doi.org/10.1093/nar/gkg002
  33. Tsai SJ, Lo CF, Soichi Y, Wang CH (2003) The characterization of microsporidian isolates (Nosematidae: Nosema) from five important lepidopteran pests in Taiwan. J Invertbr Pathol 83, 51-59. https://doi.org/10.1016/S0022-2011(03)00035-1
  34. Undeen AH, Alger NE (1971) A density gradient method for fractionating microsporidian spores. J Invertbr Pathol 18, 419-420. https://doi.org/10.1016/0022-2011(71)90048-6
  35. Undeen AH, Cockburn AF (1989) The extraction of DNA from microsporidia spores. J Invertbr Pathol 54, 132-133. https://doi.org/10.1016/0022-2011(89)90151-1
  36. Undeen AH, Vavra J (1997) Research methods for entomopathogenic protozoa. In: Lacey, L.A. (Ed.), Manual of Techniques in Insect Pathology, Academic Press, San Diego, USA, pp. 117-151.
  37. Vijayan K (2004) Genetic relationships of Japanese and Indian mulberry (Morus spp.) genotypes revealed by DNA fingerprinting. Plant Syst Evol 243, 221-232. https://doi.org/10.1007/s00606-003-0078-y
  38. Vossbrinck CR, Maddox JV, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326, 411-414. https://doi.org/10.1038/326411a0
  39. Vossbrinck CR, Woese CR (1986) Eukaryotic ribosomes that lack a 5.8s RNA. Nature 320, 287-288. https://doi.org/10.1038/320287a0
  40. Wasson K, Peper RL (2000) Mammalian microsporidiosis. Vet Pathol 37, 113-128. https://doi.org/10.1354/vp.37-2-113
  41. Weiss LM (2001) Microsporidia 2001: Cincinnati. J Eukaryot Microbiol(Suppl.), 47S-49S.
  42. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 18, 7213-7218. https://doi.org/10.1093/nar/18.24.7213
  43. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531-6535. https://doi.org/10.1093/nar/18.22.6531
  44. Wittner M, Weiss LM (1999) The microsporidia and microsporidiosis. ASM, Washington, (D.C), Pp.1-553.
  45. Yap IV, Nelson RJ (1996) WINBOOT: A program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI discussion paper series No.14, International Rice research Institute, Manila, Philippines.
  46. Young FW, Easterling DV, Forsyth BN (1984) The general Euclidean model for scaling three mode dissimilarities: Theory and allocation. In: Law, H.G., Snyder, G.W. Jr., Hattie, J., McDonald, R.P. (Eds.). Research methods for multi-node data analysis in the behavioural sciences. Praeger, New York, USA.
  47. Young FW, Harris DF (1990) Multidimensional scaling: procedure ALSCAL. In: Norusis M. (Ed.) SPSS base system: user's guide, Chicago, USA, pp. 397-461.
  48. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple-sequence repeat (SSR)- anchored polymerase chain reaction amplification. Genomics 20, 176-183. https://doi.org/10.1006/geno.1994.1151