DOI QR코드

DOI QR Code

COVARIANT MAPS FOR THE SCHRÖDINGER-WEIL REPRESENTATION

  • Received : 2014.04.25
  • Published : 2015.03.31

Abstract

In this paper, we construct the Schr$\ddot{o}$dinger-Weil representation of the Jacobi group associated with a positive definite symmetric real matrix of degree m and find covariant maps for the Schr$\ddot{o}$dinger-Weil representation.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Birkhauser, 1998.
  2. M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Math., 55, Birkhauser, Boston, Basel and Stuttgart, 1985.
  3. E. Freitag, Siegelsche Modulfunktionen, Grundlehren de mathematischen Wissenschaften 55, Springer-Verlag, Berlin-Heidelberg-New York, 1983.
  4. S. Gelbart, Weil's Representation and the Spectrum of the Metaplectic Group, Lecture Notes in Math. 530, Springer-Verlag, Berlin and New York, 1976.
  5. T. Ibukiyama, On Jacobi forms and Siegel modular forms of half integral weights, Comment. Math. Univ. St. Paul. 41 (1992), no. 2, 109-124.
  6. T. Ikeda, On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n, Ann. of Math. 154 (2001), no. 3, 641-681. https://doi.org/10.2307/3062143
  7. M. Itoh, H. Ochiai, and J.-H. Yang, Invariant differential operators on Siegel-Jacobi space, preprint, 2013.
  8. M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1-47. https://doi.org/10.1007/BF01389900
  9. G. Lion and M. Vergne, The Weil representation, Maslov index and Theta series, Progress in Math., 6, Birkhauser, Boston, Basel and Stuttgart, 1980.
  10. G. W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. 55 (1952), 101-139. https://doi.org/10.2307/1969423
  11. J. Marklof, Pair correlation densities of inhomogeneous quadratic forms, Ann. of Math. 158 (2003), no. 2, 419-471. https://doi.org/10.4007/annals.2003.158.419
  12. D. Mumford, Tata Lectures on Theta. I, Progress in Math. 28, Boston-Basel-Stuttgart, 1983.
  13. A. Pitale, Jacobi Maass forms, Abh. Math. Sem. Univ. Hamburg 79 (2009), no. 1, 87-111. https://doi.org/10.1007/s12188-008-0013-9
  14. C. L. Siegel, Indefinite quadratische Formen und Funnktionentheorie I and II, Math. Ann. 124 (1951), 17-54 and Math. Ann. 124 (1952), 364-387 https://doi.org/10.1007/BF01343549
  15. C. L. Siegel, Gesammelte Abhandlungen, Band III, Springer-Verlag (1966), 105-142 and 154-177
  16. K. Takase, A note on automorphic forms, J. Reine Angew. Math. 409 (1990), 138-171.
  17. K. Takase, On two-fold covering group of Sp(n,R) and automorphic factor of weight 1/2, Comment. Math. Univ. St. Paul. 45 (1996), no. 2, 117-145.
  18. K. Takase, On Siegel modular forms of half-integral weights and Jacobi forms, Trans. Amer. Math. Soc. 351 (1999), no. 2, 735-780. https://doi.org/10.1090/S0002-9947-99-02168-6
  19. A. Weil, Sur certains groupes d'operateurs unitares, Acta Math. 111 (1964), 143-211 https://doi.org/10.1007/BF02391012
  20. A. Weil, Collected Papers (1964-1978), Vol. III, Springer-Verlag (1979), 1-69.
  21. J.-H. Yang, Harmonic analysis on the quotient spaces of Heisenberg groups, Nagoya Math. J. 123 (1991), 103-117.
  22. J.-H. Yang, Remarks on Jacobi forms of higher degree, Proc. of the 1993 Workshop on automorphic forms and related topics (Seoul, 1993), 33-58, Pyungsan Inst. Math. Sci., Seoul, 1993.
  23. J.-H. Yang, The Siegel-Jacobi Operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135-146. https://doi.org/10.1007/BF02941338
  24. J.-H. Yang, Harmonic analysis on the quotient spaces of Heisenberg groups. II, J. Number Theory 49 (1994), no. 1, 63-72. https://doi.org/10.1006/jnth.1994.1080
  25. J.-H. Yang, Singular Jacobi forms, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2041-2049. https://doi.org/10.1090/S0002-9947-1995-1290733-2
  26. J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canad. J. Math. 47 (1995), no. 6, 1329-1339. https://doi.org/10.4153/CJM-1995-068-2
  27. J.-H. Yang, A decomposition theorem on differential polynomials of theta functions of high level, Japan. J. Math. (N.S.) 22 (1996), no. 1, 37-49.
  28. J.-H. Yang, Fock representations of the Heisenberg group $H_{\mathbb{R}}^{(g,h)}$, J. Korean Math. Soc. 34 (1997), no. 2, 345-370.
  29. J.-H. Yang, Lattice representations of Heisenberg groups, Math. Ann. 317 (2000), no. 2, 309-323. https://doi.org/10.1007/s002080000097
  30. J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, Houston J. Math. 32 (2006), no. 3, 701-712.
  31. J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, J. Number Theory 127 (2007), no. 1, 83-102. https://doi.org/10.1016/j.jnt.2006.12.014
  32. J.-H. Yang, A partial Cayley transform of Siegel-Jacobi disk, J. Korean Math. Soc. 45 (2008), no. 3, 781-794. https://doi.org/10.4134/JKMS.2008.45.3.781
  33. J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi disk, Chin. Ann. Math. Ser. B 31 (2010), no. 1, 85-100. https://doi.org/10.1007/s11401-008-0348-7
  34. J.-H. Yang, Heisenberg Group, Theta Functions and the Weil Representation, Kyung Moon Sa, Seoul, 2012.
  35. J.-H. Yang, A note on Maass-Jacobi forms II, Kyungpook Math. J. 53 (2013), no. 1, 49-86. https://doi.org/10.5666/KMJ.2013.53.1.49
  36. J.-H. Yang, Y.-H. Yong, S.-N. Huh, J.-H. Shin, and G.-H. Min, Sectional curvatures of the Siegel-Jacobi space, Bull. Korean Math. Soc. 50 (2013), no. 3, 787-799. https://doi.org/10.4134/BKMS.2013.50.3.787
  37. C. Ziegler, Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg 59 (1989), 191-224. https://doi.org/10.1007/BF02942329

Cited by

  1. THETA SUMS OF HIGHER INDEX vol.53, pp.6, 2016, https://doi.org/10.4134/BKMS.b160009