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UNIVARIATE LEFT FRACTIONAL POLYNOMIAL HIGH

ORDER MONOTONE APPROXIMATION

George A. Anastassiou

Abstract. Let f ∈ Cr ([−1, 1]), r ≥ 0 and let L∗ be a linear left frac-
tional differential operator such that L∗ (f) ≥ 0 throughout [0, 1]. We can
find a sequence of polynomials Qn of degree ≤ n such that L∗ (Qn) ≥ 0
over [0, 1], furthermore f is approximated left fractionally and simulta-
neously by Qn on [−1, 1] . The degree of these restricted approximations
is given via inequalities using a higher order modulus of smoothness for
f(r).

1. Introduction

The topic of monotone approximation started in [6] has become a major
trend in approximation theory. A typical problem in this subject is: given a
positive integer k, approximate a given function whose kth derivative is ≥ 0 by
polynomials having this property.

In [3] the authors replaced the kth derivative with a linear differential oper-
ator of order k. We mention this motivating result.

Theorem 1. Let h, k, p be integers, 0 ≤ h ≤ k ≤ p and let f be a real function,

f (p) continuous in [−1, 1] with modulus of continuity ω1

(

f (p), x
)

there. Let

aj (x), j = h, h + 1, . . . , k be real functions, defined and bounded on [−1, 1]
and assume ah (x) is either ≥ some number α > 0 or ≤ some number β < 0
throughout [−1, 1]. Consider the operator

L =

k
∑

j=h

aj (x)

[

dj

dxj

]

and suppose, throughout [−1, 1],

(1) L (f) ≥ 0.
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Then, for every integer n ≥ 1, there is a real polynomial Qn (x) of degree ≤ n

such that

L (Qn) ≥ 0 throughout [−1, 1]

and

max
−1≤x≤1

|f (x)−Qn (x)| ≤ Cnk−pω1

(

f (p),
1

n

)

,

where C is independent of n or f .

We use also the notation I = [−1, 1] .
We would like to mention:

Theorem 2 (Gonska and Hinnemann [5]). Let r ≥ 0 and s ≥ 1. Then there

exists a sequence Qn = Q
(r,s)
n of linear polynomial operators mapping Cr (I)

into Pn (space of polynomials of degree ≤ n), such that for all f ∈ Cr (I), all
|x| ≤ 1 and all n ≥ max (4 (r + 1) , r + s) we have

(2)
∣

∣

∣f (k) (x)−(Qnf)
(k)

(x)
∣

∣

∣≤Mr,s (∆n (x))
r−k

ωs

(

f (r),∆n (x)
)

, 0 ≤ k ≤ r,

where ∆n (x) =
√

1−x2

n
+ 1

n2 , and Mr,s is a constant independent of f , x, and

n. Above ωs is the usual modulus of smoothnees of order s with respect to the

supremum norm.

Theorem 2 implies the useful:

Corollary 3 ([2]). Let r ≥ 0 and s ≥ 1. Then there exists a sequence Qn =

Q
(r,s)
n of linear polynomial operators mapping Cr (I) into Pn, such that for all

f ∈ Cr (I) and all n ≥ max (4 (r + 1) , r + s) we have

(3)
∥

∥

∥f
(k) − (Qnf)

(k)
∥

∥

∥

∞

≤
Cr,s

nr−k
ωs

(

f (r),
1

n

)

, k = 0, 1, . . . , r,

where Cr,s is a constant independent of f and n.

In [2] we proved the motivational:

Theorem 4. Let h, v, r be integers, 0 ≤ h ≤ v ≤ r and let f ∈ Cr (I),
with f (r) having modulus of smoothness ωs

(

f (r), δ
)

there, s ≥ 1. Let αj (x),
j = h, h+ 1, . . . , v be real functions, defined and bounded on I and suppose αh

is either ≥ α > 0 or ≤ β < 0 throughout I. Take the operator

(4) L =
v
∑

j=h

αj (x)

[

dj

dxj

]

and assume, throughout I,

(5) L (f) ≥ 0.

Then for every integer n ≥ max (4 (r + 1) , r + s), there exists a real polynomial

Qn (x) of degree ≤ n such that

(6) L (Qn) ≥ 0 throughout I,
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and

(7)
∥

∥

∥
f (k) −Q(k)

n

∥

∥

∥

∞

≤
C

nr−v
ωs

(

f (r),
1

n

)

, 0 ≤ k ≤ h.

Moreover, we get

(8)
∥

∥

∥f (k) −Q(k)
n

∥

∥

∥

∞

≤
C

nr−k
ωs

(

f (r),
1

n

)

, h+ 1 ≤ k ≤ r,

were C is a constant independent of f and n.

In this article we extend Theorem 4 to the fractional level. Indeed here L is
replaced by L∗, a linear left Caputo fractional differential operator. Now the
monotonicity property is only true on the critical interval [0, 1]. Simultaneous
and fractional convergence remains true on all of I.

We are also inspired by [1].
We make:

Definition 5 ([4], p. 50). Let α > 0 and ⌈α⌉ = m, (⌈·⌉ ceiling of the number).
Consider f ∈ Cm ([−1, 1]). We define the left Caputo fractional derivative of f
of order α as follows:

(9)
(

Dα
∗−1f

)

(x) =
1

Γ (m− α)

∫ x

−1

(x− t)m−α−1
f (m) (t) dt,

for any x ∈ [−1, 1], where Γ is the gamma function.
We set

D0
∗−1f (x) = f (x) ,

(10) Dm
∗−1f (x) = f (m) (x) , ∀ x ∈ [−1, 1] .

2. Main result

We present:

Theorem 6. Let h, v, r be integers, 1 ≤ h ≤ v ≤ r and let f ∈ Cr ([−1, 1]),
with f (r) having modulus of smoothness ωs

(

f (r), δ
)

there, s ≥ 1. Let αj (x),
j = h, h+1, . . . , v be real functions, defined and bounded on [−1, 1] and suppose

αh (x) is either ≥ α > 0 or ≤ β < 0 on [0, 1]. Let the real numbers α0 = 0 <

α1 ≤ 1 < α2 ≤ 2 < · · · < αr ≤ r. Here D
αj

∗−1f stands for the left Caputo

fractional derivative of f of order αj anchored at −1. Consider the linear left

fractional differential operator

(11) L∗ :=

k
∑

j=h

αj (x)
[

D
αj

∗−1

]

and suppose, throughout [0, 1],

(12) L∗ (f) ≥ 0.



596 G. A. ANASTASSIOU

Then, for any n ∈ N such that n ≥ max (4 (r + 1) , r + s), there exists a real

polynomial Qn (x) of degree ≤ n such that

(13) L∗ (Qn) ≥ 0 throughout [0, 1] ,

and

(14)

sup
−1≤x≤1

∣

∣

(

D
αj

∗−1f
)

(x)−
(

D
αj

∗−1Qn

)

(x)
∣

∣

≤
2j−αj

Γ (j − αj + 1)

Cr,s

nr−j
ωs

(

f (r),
1

n

)

,

j = h+ 1, . . . , r; Cr,s is a constant independent of f and n.

Set

(15) lj :≡ sup
x∈[−1,1]

∣

∣α−1
h (x)αj (x)

∣

∣ , h ≤ j ≤ v.

When j = 1, . . . , h we derive

(16) sup
−1≤x≤1

∣

∣

(

D
αj

∗−1f
)

(x)−
(

D
αj

∗−1Qn

)

(x)
∣

∣ ≤
Cr,s

nr−v
ωs

(

f (r),
1

n

)

·

[(

v
∑

τ=h

lτ
2τ−ατ

Γ (τ − ατ + 1)

)(

h−j
∑

λ=0

2h−αj−λ

λ!Γ (h− αj − λ+ 1)

)

+
2j−αj

Γ (j − αj + 1)

]

.

Finally it holds

(17)

sup
−1≤x≤1

|f (x)−Qn (x)|

≤
Cr,s

nr−v
ωs

(

f (r),
1

n

)

[

1

h!

v
∑

τ=h

lτ
2τ−ατ

Γ (τ − ατ + 1)
+ 1

]

.

Proof. Here let Qn as in Corollary 3. Let αj > 0, j = 1, . . . , r, such that
0 < α1 ≤ 1 < α2 ≤ 2 < α3 ≤ 3 < · · · < αr ≤ r. That is ⌈αj⌉ = j, j = 1, . . . , r.

We consider the left Caputo fractional derivatives

(18)
(

D
αj

∗−1f
)

(x) =
1

Γ (j − αj)

∫ x

−1

(x− t)
j−αj−1

f (j) (t) dt,

and
(

D
j
∗−1f

)

(x) = f (j) (x) ,

and

(19)
(

D
αj

∗−1Qn

)

(x) =
1

Γ (j − αj)

∫ x

−1

(x− t)
j−αj−1

Q(j)
n (t) dt,

(

D
j
∗−1Qn

)

(x) = Q(j)
n (x) ; j = 1, . . . , r.

We notice that
∣

∣

(

D
αj

∗−1f
)

(x)−
(

D
αj

∗−1Qn

)

(x)
∣

∣
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=
1

Γ (j − αj)

∣

∣

∣

∣

∫ x

−1

(x− t)
j−αj−1

f (j) (t) dt−

∫ x

−1

(x− t)
j−αj−1

Q(j)
n (t) dt

∣

∣

∣

∣

(20)

=
1

Γ (j − αj)

∣

∣

∣

∣

∫ x

−1

(x− t)
j−αj−1

(

f (j) (t)−Q(j)
n (t)

)

dt

∣

∣

∣

∣

≤
1

Γ (j − αj)

∫ x

−1

(x− t)j−αj−1
∣

∣

∣
f (j) (t)−Q(j)

n (t)
∣

∣

∣
dt(21)

(3)

≤
1

Γ (j − αj)

(∫ x

−1

(x− t)
j−αj−1

dt

)

Cr,s

nr−j
ωs

(

f (r),
1

n

)

=
1

Γ (j − αj)

(x+ 1)
j−αj

(j − αj)

Cr,s

nr−j
ωs

(

f (r),
1

n

)

(22)

=
(x+ 1)

j−αj

Γ (j − αj + 1)

Cr,s

nr−j
ωs

(

f (r),
1

n

)

≤
2j−αj

Γ (j − αj + 1)

Cr,s

nr−j
ωs

(

f (r),
1

n

)

.

We proved for any x ∈ [−1, 1] that

(23)
∣

∣

(

D
αj

∗−1f
)

(x)−
(

D
αj

∗−1Qn

)

(x)
∣

∣ ≤
2j−αj

Γ (j − αj + 1)

Cr,s

nr−j
ωs

(

f (r),
1

n

)

.

Hence it holds
(24)

sup
−1≤x≤1

∣

∣

(

D
αj

∗−1f
)

(x)−
(

D
αj

∗−1Qn

)

(x)
∣

∣ ≤
2j−αj

Γ (j − αj + 1)

Cr,s

nr−j
ωs

(

f (r),
1

n

)

,

j = 0, 1, . . . , r.
Above we set D0

∗−1f (x) = f (x), D0
∗−1Qn (x) = Qn (x), ∀ x ∈ [−1, 1], and

α0 = 0, i.e., ⌈α0⌉ = 0.
Set also

(25) ρn := Cr,sωs

(

f (r),
1

n

)





v
∑

j=h

lj
2j−αj

Γ (j − αj + 1)
nj−r



 .

I. Suppose, throughout [0, 1], αh (x) ≥ α > 0. Let Qn (x), x ∈ [−1, 1], be a
real polynomial of degree ≤ n so that

(26)

max
−1≤x≤1

∣

∣

∣

∣

D
αj

∗−1

(

f (x) + ρn
xh

h!

)

−
(

D
αj

∗−1Qn

)

(x)

∣

∣

∣

∣

≤
2j−αj

Γ (j − αj + 1)

Cr,s

nr−j
ωs

(

f (r),
1

n

)

, j = 0, 1, . . . , r.
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When j = h+ 1, . . . , r, then

(27)

max
−1≤x≤1

∣

∣

(

D
αj

∗−1f
)

(x)−
(

D
αj

∗−1Qn

)

(x)
∣

∣

≤
2j−αj

Γ (j − αj + 1)

Cr,s

nr−j
ωs

(

f (r),
1

n

)

,

proving (14).
For j = 1, . . . , h we get

(28) D
αj

∗−1

(

xh

h!

)

=
1

Γ (j − αj)

∫ x

−1

(x− t)j−αj−1 th−j

(h− j)!
dt

(we see that t = t+ 1− 1, and

th−j = ((t+ 1)− 1)
h−j

=

h−j
∑

λ=0

(

h− j

λ

)

(t+ 1)
h−j−λ

(−1)
λ
)

=
1

(h− j)!Γ (j − αj)

·

h−j
∑

λ=0

(−1)
λ

(

h− j

λ

)∫ x

−1

(x− t)
j−αj−1

(t+ 1)
h−j−λ+1−1

dt

=
1

(h− j)!Γ (j − αj)

·

h−j
∑

λ=0

(−1)
λ (h− j)!

λ! (h− j − λ)!

Γ (j − αj) Γ (h− j − λ+ 1)

Γ (h− αj − λ+ 1)
(x+ 1)

h−αj−λ

=

h−j
∑

λ=0

(−1)
λ

λ!Γ (h− αj − λ+ 1)
(x+ 1)

h−αj−λ
.(29)

Hence for j = 1, . . . , h we found that

(30) D
αj

∗−1

(

xh

h!

)

=

h−j
∑

λ=0

(−1)
λ
(x+ 1)

h−αj−λ

λ!Γ (h− αj − λ+ 1)
.

Therefore we get from (26) that
(31)

max
−1≤x≤1

∣

∣

∣

∣

∣

(

D
αj

∗−1f
)

(x) + ρn

(

h−j
∑

λ=0

(−1)
λ
(x+ 1)

h−αj−λ

λ!Γ (h− αj − λ+ 1)

)

−
(

D
αj

∗−1Qn

)

(x)

∣

∣

∣

∣

∣

≤
2j−αj

Γ (j − αj + 1)

Cr,s

nr−j
ωs

(

f (r),
1

n

)

, j = 1, . . . , h.

Therefore we get for j = 1, . . . , h, that

max
−1≤x≤1

∣

∣

(

D
αj

∗−1f
)

(x) −
(

D
αj

∗−1Qn

)

(x)
∣

∣
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≤ ρn

(

h−j
∑

λ=0

2h−αj−λ

λ!Γ (h− αj − λ+ 1)

)

+
2j−αj

Γ (j − αj + 1)

Cr,s

nr−j
ωs

(

f (r),
1

n

)

(32)

= Cr,sωs

(

f (r),
1

n

)





k
∑

j=h

lj
2j−αj

Γ
(

j − αj + 1
)nj−r





·

(

h−j
∑

λ=0

2h−αj−λ

λ!Γ (h− αj − λ+ 1)

)

+
2j−αj

Γ (j − αj + 1)

Cr,s

nr−j
ωs

(

f (r),
1

n

)

= Cr,sωs

(

f (r),
1

n

)









k
∑

j=h

lj
2j−αj

Γ
(

j − αj + 1
)

1

nr−j



(33)

·

(

h−j
∑

λ=0

2h−αj−λ

λ!Γ (h− αj − λ+ 1)

)

+
2j−αj

Γ (j − αj + 1)

1

nr−j

]

≤ Cr,sωs

(

f (r),
1

n

)

1

nr−v









v
∑

j=h

lj
2j−αj

Γ
(

j − αj + 1
)



(34)

·

(

h−j
∑

λ=0

2h−αj−λ

λ!Γ (h− αj − λ+ 1)

)

+
2j−αj

Γ (j − αj + 1)

]

.

Hence for j = 1, . . . , h we derived (16):

(35) max
−1≤x≤1

∣

∣

(

D
αj

∗−1f
)

(x)−
(

D
αj

∗−1Qn

)

(x)
∣

∣ ≤
Cr,s

nr−v
ωs

(

f (r),
1

n

)

·

[(

v
∑

τ=h

lτ
2τ−ατ

Γ (τ − ατ + 1)

)(

h−j
∑

λ=0

2h−αj−λ

λ!Γ (h− αj − λ+ 1)

)

+
2j−αj

Γ (j − αj + 1)

]

.

From (26) when j = 0 we obtain

(36) max
−1≤x≤1

∣

∣

∣

∣

f (x) + ρn
xh

h!
−Qn (x)

∣

∣

∣

∣

≤
Cr,s

nr
ωs

(

f (r),
1

n

)

.

And

max
−1≤x≤1

|f (x)−Qn (x)| ≤
ρn
h!

+
Cr,s

nr
ωs

(

f (r),
1

n

)

(37)

=
Cr,s

h!
ωs

(

f (r),
1

n

)

(

v
∑

τ=h

lτ
2τ−ατ

Γ (τ − ατ + 1)
nτ−r

)

+
Cr,s

nr
ωs

(

f (r),
1

n

)

= Cr,sωs

(

f (r),
1

n

)

[

1

h!

v
∑

τ=h

lτ
2τ−ατ

Γ (τ − ατ + 1)nr−τ
+

1

nr

]
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≤
Cr,s

nr−v
ωs

(

f (r),
1

n

)

[

1

h!

k
∑

τ=h

lτ
2τ−ατ

Γ (τ − ατ + 1)
+ 1

]

,(38)

that is proving (17).
Also if 0 ≤ x ≤ 1, then

α−1
h (x)L∗ (Qn (x))(39)

= α−1
h (x)L∗ (f (x)) + ρn

(x+ 1)
h−αh

Γ (h− αh + 1)

+

v
∑

j=h

α−1
h (x)αj (x)

[

D
αj

∗−1Qn (x) −D
αj

∗−1f (x)−
ρn
h!

D
αj

∗−1x
h
]

(26)

≥ ρn
(x+ 1)

h−αh

Γ (h− αh + 1)
−





v
∑

j=h

lj
2j−αj

Γ (j − αj + 1)

Cr,s

nr−j
ωs

(

f (r),
1

n

)





= ρn
(x+ 1)

h−αh

Γ (h− αh + 1)
− ρn = ρn

[

(x+ 1)
h−αh

Γ (h− αh + 1)
− 1

]

(40)

= ρn

[

(x+ 1)h−αh − Γ (h− αh + 1)

Γ (h− αh + 1)

]

≥ ρn

[

1− Γ (h− αh + 1)

Γ (h− αh + 1)

]

≥ 0.(41)

Explanation: We know that Γ (1) = 1, Γ (2) = 1, and Γ is convex and positive
on (0,∞) . Here 0 ≤ h−αh < 1 and 1 ≤ h−αh+1 < 2. Thus Γ (h− αh + 1) ≤ 1
and 1− Γ (h− αh + 1) ≥ 0. Hence L∗ (Qn (x)) ≥ 0, x ∈ [0, 1] .

II. Suppose on [0, 1] that αh (x) ≤ β < 0. Let Qn (x), x ∈ [−1, 1], be a real
polynomial of degree ≤ n so that

(42)

max
−1≤x≤1

∣

∣

∣

∣

D
αj

∗−1

(

f (x) − ρn
xh

h!

)

−
(

D
αj

∗−1Qn

)

(x)

∣

∣

∣

∣

≤
2j−αj

Γ (j − αj + 1)

Cr,s

nr−j
ωs

(

f (r),
1

n

)

, j = 0, 1, . . . , r.

Similarly we obtain again inequalities of convergence, see (14), (16) and (17).
Also if 0 ≤ x ≤ 1, then

α−1
h (x)L∗ (Qn (x))(43)

= α−1
h (x)L∗ (f (x))− ρn

(x+ 1)h−αh

Γ (h− αh + 1)

+

v
∑

j=h

α−1
h (x)αj (x)

[

D
αj

∗−1Qn (x)−D
αj

∗−1f (x) +
ρn
h!

(

D
αj

∗−1x
h
)

]

(42)

≤ − ρn
(x+ 1)h−αh

Γ (h− αh + 1)
+

v
∑

j=h

lj
2j−αj

Γ (j − αj + 1)

Cr,s

nr−j
ωs

(

f (r),
1

n

)
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= ρn

(

1−
(x+ 1)

h−αh

Γ (h− αh + 1)

)

= ρn

(

Γ (h− αh + 1)− (x+ 1)
h−αh

Γ (h− αh + 1)

)

(44)

≤ ρn

(

1− (x+ 1)
h−αh

Γ (h− αh + 1)

)

≤ 0,(45)

and hence on [0, 1] again holds L∗ (Qn (x)) ≥ 0. �

Remark 7 (to Theorem 6). Suppose that αj (x), j = h, h + 1, . . . , v are con-
tinuous functions on [−1, 1], and we have on [0, 1] only L∗ (f) > 0. Relax
the condition αh (x) is either ≥ α > 0 or ≤ β < 0 on [0, 1]. Let Qn be the
polynomial of degree ≤ n corresponding to f from (24).

Then D
αj

∗−1Qn converges uniformly to D
αj

∗−1f at a higher rate given by in-
equality (24), in particular for 0 ≤ j ≤ h. Moreover, because L∗ (Qn) converges
uniformly to L∗ (f) on [−1, 1], L∗ (Qn) > 0 on [0, 1] for sufficiently large n.
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