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LIE TRIPLE DERIVATIONS ON FACTOR

VON NEUMANN ALGEBRAS

Lei Liu

Abstract. Let A be a factor von Neumann algebra with dimension
greater than 1. We prove that if a linear map δ : A → A satisfies

δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] + [[a, b], δ(c)]

for any a, b, c ∈ A with ab = 0 (resp. ab = P , where P is a fixed nontrivial
projection of A), then there exist an operator T ∈ A and a linear map
f : A → CI vanishing at every second commutator [[a, b], c] with ab = 0
(resp. ab = P ) such that δ(a) = aT − Ta+ f(a) for any a ∈ A.

1. Introduction

Let U be an algebra over the complex field C. Recall that a linear map δ

from U into itself is called a derivation if δ(ab) = δ(a)b+ aδ(b) for all a, b ∈ U .
δ is called a Lie derivation if δ([a, b]) = [δ(a), b] + [a, δ(b)] for all a, b ∈ U ,
where [a, b] = ab − ba. More generally, δ is called a Lie triple derivation if
δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] + [[a, b], δ(c)] for all a, b, c ∈ U . Deriva-
tions, Lie derivations and Lie triple derivations are very important maps both
in theory and applications.

In recent years the local actions of derivations and Lie derivations have been
studied intensively. One direction is to study the conditions under which deriva-
tions and Lie derivations of operator algebras can be completely determined by
the action on some elements concerning products. We say that a linear map
δ : U → U is derivable at a given point Z ∈ U if δ(ab) = δ(a)b + aδ(b) for all
a, b ∈ U with ab = Z. This kind of maps were discussed by several authors (see
[1, 2, 3, 6, 9, 12] and references therein). Similarly, a linear map δ : U → U is
said to be Lie derivable at a given point Z ∈ U if δ([a, b]) = [δ(a), b]+[a, δ(b)] for
all a, b ∈ U with ab = Z. Lu and Jing [8] discussed such maps on B(X) where
X is a Banach space with dimX ≥ 3 and B(X) is the algebra of all bounded
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linear operators acting on X . It is proved in [8] that if δ is Lie derivable at
Z = 0 (resp., Z = P , where P is a fixed nontrivial idempotent of B(X)), then
δ = d+ τ , where d is a derivation of B(X) and τ : B(X) → CI is a linear map
vanishing at every commutator [a, b] with ab = 0 (resp. ab = P ). Ji [5] gave
a similar result on factor von Neumann algebras with dimension great than 4.
In [10], the result was generalized on prime rings.

But, so far, there have been no papers on the study of the local actions of Lie
triple derivations on operator algebras. We say that a linear map δ : U → U
is Lie triple derivable at a given point Z ∈ U if δ([[a, b], c]) = [[δ(a), b], c] +
[[a, δ(b)], c] + [[a, b], δ(c)] for all a, b, c ∈ U with ab = Z. It is obvious that the
condition of being a Lie triple derivable map at some point is much weaker than
the condition of being a Lie triple derivation. It is the aim of the present article
to investigate the linear maps δ on factor von Neumann algebras satisfying
δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] + [[a, b], δ(c)] for any a, b, c with ab = 0
(resp., ab = P , where P is a fixed nontrivial projection).

Throughout the article, let H be a complex Hilbert space and B(H) be the
algebra of all bounded linear operator on H . We denote by A ⊆ B(H) the
factor von Neumann algebra (i.e., the center of A is CI, where I is the identity
of A). Recall that A is prime (i.e., for any a, b ∈ A, aAb = 0 implies a = 0 or
b = 0). We refer the reader to [7] for the theory of von Neumann algebras.

2. Characterizing Lie triple derivations by acting on zero product

In this section, we consider the question of characterizing Lie triple deriva-
tions by action at zero product on factor von Neumann algebras.

Theorem 2.1. Let A be a factor von Neumann algebra with dimension greater

than 1 acting on a Hilbert space, and a linear map δ : A → A satisfying

δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] + [[a, b], δ(c)]

for all a, b, c ∈ A with ab = 0. Then there exist an operator T ∈ A and a linear

map f : A → CI vanishing at every second commutator [[a, b], c] when ab = 0
such that

δ(a) = aT − Ta+ f(a), ∀a ∈ A.

Proof. Fix a nontrivial projection P1 ∈ A and let P2 = I − P1. We denote
Aij = PiAPj for i, j = 1, 2. Then A = A11 + A12 + A21 + A22 and each
operator a ∈ A can be written as a = a11 + a12 + a21 + a22, where aij ∈ Aij ,
i, j = 1, 2.

We shall organize the proof of Theorem 2.1 in a series of claims.
Claim 1. Let aii ∈ Aii, i = 1, 2. If a11b12 = b12a22 for all b12 ∈ A12, then

a11 + a22 ∈ CI.

For any x11 ∈ A11, x12 ∈ A12, we have a11x11x12 = x11x12a22 = x11a11x12.
Since A is prime, it follows that a11x11 = x11a11. Clearly, A11 is a factor von
Neumann algebra on P1H . Then a11 = λ1P1, λ1 ∈ C. Similarly, we have
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a22 = λ2P2, λ2 ∈ C. So λ1b12 = a11b12 = b12a22 = λ2b12, which implies
λ1 = λ2. Hence, a11 + a22 ∈ CI proving the claim.

Moreover, for any a12 ∈ A12, since a12P1 = 0, we have

δ(a12) = δ([[a12, P1], P1])

= [[δ(a12), P1], P1] + [[a12, δ(P1)], P1] + [[a12, P1], δ(P1)]

= P1δ(a12)P2 + P2δ(a12)P1 + P1δ(P1)a12 − a12δ(P1)P2

+ δ(P1)a12 − a12δ(P1).

Multiplying P1 from the left side and P2 from the right side of the above
equation, we arrive at P1δ(P1)a12 = a12δ(P1)P2. It follows from Claim 1 that
P1δ(P1)P1 + P2δ(P1)P2 = λI, λ ∈ C. Let E = P1δ(P1)P2 − P2δ(P1)P1, and
ϕ = δ− δE , where δE is the inner derivation given by δE(x) = xE −Ex for all
x ∈ A. It is not difficult to verify

ϕ(P1) = δ(P1)− δE(P1) = λI,

and
ϕ([[a, b], c]) = [[ϕ(a), b], c] + [[a, ϕ(b)], c] + [[a, b], ϕ(c)]

for any a, b, c ∈ A with ab = 0.
Claim 2. ϕ(P2) ∈ CI.

Since P2P1 = 0 and ϕ(P1) = λI, we have

0 = ϕ([[P2, P1], P1]) = [[ϕ(P2), P1], P1] = P1ϕ(P2)P2 + P2ϕ(P2)P1.

For any a12 ∈ A12, since P2a12 = 0, we get

−ϕ(a12) = ϕ([[P2, a12], P2])

= [[ϕ(P2), a12], P2] + [[P2, ϕ(a12)], P2] + [[P2, a12], ϕ(P2)]

= P1ϕ(P2)a12 − a12ϕ(P2)P2 − P1ϕ(a12)P2 − P2ϕ(a12)P1

− a12ϕ(P2) + ϕ(P2)a12.

Multiplying the above equation by P1 from the left and by P2 from the right,
we obtain

P1ϕ(P2)a12 = a12ϕ(P2)P2.

Then it follows that P1ϕ(P2)P1 + P2ϕ(P2)P2 ∈ CI by Claim 1, and hence
ϕ(P2) ∈ CI.

Claim 3. ϕ(Aij) ⊆ Aij , 1 ≤ i 6= j ≤ 2.
Since a12P1 = 0 and ϕ(P1) = λI, we get

ϕ(a12) = ϕ([[a12, P1], P1]) = P1ϕ(a12)P2 + P2ϕ(a12)P1,

which implies P1ϕ(a12)P1 = P2ϕ(a12)P2 = 0. Now it suffices to show that
P2ϕ(a12)P1 = 0. Indeed, for any b12 ∈ A12, x ∈ A, it is easy to check that

0 = ϕ([[a12, b12], x]) = [[ϕ(a12), b12], x] + [[a12, ϕ(b12)], x],

which leads to [ϕ(a12), b12] + [a12, ϕ(b12)] = γI ∈ CI. Then we have

[ϕ(a12), b12] = γI − [a12, ϕ(b12)]
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= γI + [[a12, P1], ϕ(b12)]

= γI + ϕ([[a12, P1], b12])− [[ϕ(a12), P1], b12]

= γI − [[ϕ(a12), P1], b12]

= γI − [P2ϕ(a12)P1, b12].

This together with P1ϕ(a12)P1 = P2ϕ(a12)P2 = 0 entails that [P2ϕ(a12)P1, b12]
∈ CI. It follows from [4, Problem 230] that [P2ϕ(a12)P1, b12] = 0. Then
P2ϕ(a12)b12 = 0. Since A is prime, we have P2ϕ(a12)P1 = 0. Consequently,
ϕ(A12) ⊆ A12.

Similarly, we can obtain ϕ(A21) ⊆ A21.
Claim 4. There exist linear functionals fi on Aii such that ϕ(aii)−fi(aii)I ∈

Aii for any aii ∈ Aii, i = 1, 2.
Since a11P2 = 0 and from Claim 2, we have

0 = ϕ([[a11, P2], P2]) = [[ϕ(a11), P2], P2] = P1ϕ(a11)P2 + P2ϕ(a11)P1.

Moreover, for any b22 ∈ A22 and x ∈ A, it is easy to check that

0 = ϕ([[a11, b22], x]) = [[ϕ(a11), b22], x] + [[a11, ϕ(b22)], x],

which implies that [ϕ(a11), b22] + [a11, ϕ(b22)] = µI ∈ CI. Multiplying the
above equation from both sides by P2, we arrive at [P2ϕ(a11)P2, b22] = µP2,
which leads to [P2ϕ(a11)P2, b22] = 0 by [4, Problem 230]. So there exists µ̃ ∈ C

such that P2ϕ(a11)P2 = µ̃P2.
Thus we have

ϕ(a11) = P1ϕ(a11)P1 + P2ϕ(a11)P2 = P1ϕ(a11)P1 − µ̃P1 + µ̃I.

We can define a linear functional f1 on A11 by f1(a11) = µ̃. Combining with
the above equation, we have ϕ(a11) − f1(a11)I = P1ϕ(a11)P1 − µ̃P1 ∈ A11 for
any a11 ∈ A11.

With the similar argument, we can get a linear functional f2 on A22 such
that f2(a22) = µ̄ ∈ C, and ϕ(a22)− f2(a22)I ∈ A22 for any a22 ∈ A22.

Now, we define a linear map ω : A → A by

ω(a) = ϕ(a) − f1(P1aP1)I − f2(P2aP2)I, ∀a ∈ A.

By Claims 3-4, we have ω(Pi) = 0, ω(Aij) ⊆ Aij , i, j = 1, 2, and ω(aij) =
ϕ(aij) for any aij ∈ Aij , 1 ≤ i 6= j ≤ 2. In the following we shall show ω is a
derivation.

Claim 5. ω(aiibij) = aiiω(bij) + ω(aii)bij for any aii ∈ Aii, bij ∈ Aij ,

1 ≤ i 6= j ≤ 2.
Due to bijaii = 0, the following equations hold.

ω(aiibij) = ϕ(aiibij)

= ϕ([[bij , aii], Pi])

= [[ϕ(bij), aii], Pi] + [[bij , ϕ(aii)], Pi]

= [[ω(bij), aii], Pi] + [[bij , ω(aii)], Pi]
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= aiiω(bij) + ω(aii)bij .

With the similar argument in Claim 5, we have the following claim.
Claim 6. ω(aijbjj) = aijω(bjj) + ω(aij)bjj for any aij ∈ Aij, bjj ∈ Ajj ,

1 ≤ i 6= j ≤ 2.
Claim 7. ω(aiibii) = aiiω(bii) + ω(aii)bii for any aii, bii ∈ Aii, i = 1, 2.
For any bij ∈ Aij , we have, from Claim 5, that

ω(aiibiibij) = aiibiiω(bij) + ω(aiibii)bij .

At the same time,

ω(aiibiibij) = aiiω(biibij) + ω(aii)biibij

= aiibiiω(bij) + aiiω(bii)bij + ω(aii)biibij .

Comparing the above two equations, we get

ω(aiibii)bij = aiiω(bii)bij + ω(aii)biibij .

Since A is prime, we obtain ω(aiibii) = aiiω(bii) + ω(aii)bii.
Claim 8. ω(aijbji) = aijω(bji) + ω(aij)bji for any aij ∈ Aij , bji ∈ Aji,

1 ≤ i 6= j ≤ 2.
Since P2a12 = 0 and ϕ(P2) ∈ CI, we have

ϕ([[P2, a12], b21]) = [[P2, ϕ(a12)], b21] + [[P2, a12], ϕ(b21)]

= [[P2, ω(a12)], b21] + [[P2, a12], ω(b21)]

= b21ω(a12) + ω(b21)a12 − a12ω(b21)− ω(a12)b21.

Since ω(a) = ϕ(a)− f1(P1aP1)I − f2(P2aP2)I, ∀a ∈ A,

ω(b21a12 − a12b21)− f1(a12b21)I + f2(b21a12)I

= b21ω(a12) + ω(b21)a12 − a12ω(b21)− ω(a12)b21.

We shall show f1(a12b21)I − f2(b21a12)I = 0. Multiplying the above equation
by a12 to the left side and right side respectively, we obtain the following two
equations

(1) a12ω(b21a12)− (f1(a12b21)− f2(b21a12))a12 = a12b21ω(a12)+ a12ω(b21)a12

and

(2) ω(a12)b21a12+a12ω(b21)a12 = ω(a12b21)a12+(f1(a12b21)−f2(b21a12))a12.

Computing (1)+(2), we get

a12ω(b21a12) + ω(a12)b21a12 − (f1(a12b21)− f2(b21a12))a12

= a12b21ω(a12) + ω(a12b21)a12 + (f1(a12b21)− f2(b21a12))a12.

It follows from Claims 5-6 that

a12ω(b21a12) + ω(a12)b21a12 = ω(a12b21a12) = a12b21ω(a12) + ω(a12b21)a12,
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which combining with the above equation implies (f1(a12b21)−f2(b21a12))a12 =
0. Then f1(a12b21)I − f2(b21a12)I = 0. So we arrive at

ω(b21a12 − a12b21) = ω(b21)a12 + b21ω(a12)− ω(a12)b21 − a12ω(b21).

This is equivalent to ω(b21a12)=ω(b21)a12+b21ω(a12) and ω(a12b21)=ω(a12)b21
+a12ω(b21).

So ω is a derivation by Claims 5-8.
Hence we have δ(a) = ϕ(a)+δE(a) = ω(a)+f1(P1aP1)I+f2(P2aP2)I+δE(a),

∀a ∈ A. Denote φ(a) = ω(a) + δE(a) and f(a) = f1(P1aP1)I + f2(P2aP2)I.
Clearly, φ is a derivation on A and f is a linear map from A to CI. By [11],
we know every derivation of A is inner, that is, there exists an operator T ∈ A
such that φ(a) = aT − Ta for any a ∈ A. Then δ(a) = aT − Ta+ f(a) for any
a ∈ A.

For ab = 0, it follows that

f([[a, b], c]) = δ([[a, b], c])− φ([[a, b], c])

= [[δ(a), b], c] + [[a, δ(b)], c] + [[a, b], δ(c)]− φ([[a, b], c])

= [[φ(a), b], c] + [[a, φ(b)], c] + [[a, b], φ(c)]− φ([[a, b], c])

= 0. �

3. Characterizing Lie triple derivations by acting on projection

product

In this section, we consider the question of characterizing Lie triple deriva-
tions by action at projection product on factor von Neumann algebras. The
proof of the following theorem shares the similar outline as that of Theorem
2.1, but it needs different techniques.

Theorem 3.1. Let A be a factor von Neumann algebra with dimension greater

than 1 acting on a Hilbert space, and a linear map δ : A → A satisfying

δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] + [[a, b], δ(c)]

for all a, b, c ∈ A with ab = P , where P ∈ A is a fixed nontrivial projection.

Then there exist an operator T ∈ A and a linear map f : A → CI vanishing at

every second commutator [[a, b], c] when ab = P such that

δ(a) = aT − Ta+ f(a), ∀a ∈ A.

Proof. We denote P1 = P , P2 = I − P1, and Aij = PiAPj for i, j = 1, 2.
For any a12 ∈ A12, since (P1 + a12)P1 = P1, we obtain

δ(a12) = δ([[P1 + a12, P1], P1])

= [[δ(P1 + a12), P1], P1] + [[P1 + a12, δ(P1)], P1] + [[P1 + a12, P1], δ(P1)]

= [[δ(a12), P1], P1] + [[a12, δ(P1)], P1] + [[a12, P1], δ(P1)]

= P1δ(a12)P2 + P2δ(a12)P1 + P1δ(P1)a12 − a12δ(P1)P2

+ δ(P1)a12 − a12δ(P1).
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Multiplying P1 from the left side and P2 from the right side of the above
equation, we arrive at P1δ(P1)a12 = a12δ(P1)P2. It follows from Claim 1 of
the proof of Theorem 2.1 that P1δ(P1)P1 + P2δ(P1)P2 = λI, λ ∈ C. Let
E = P1δ(P1)P2 −P2δ(P1)P1, and ϕ = δ− δE, where δE is the inner derivation.
It is not difficult to verify that

ϕ(P1) = δ(P1)− δE(P1) = λI,

and

ϕ([[a, b], c]) = [[ϕ(a), b], c] + [[a, ϕ(b)], c] + [[a, b], ϕ(c)]

for any a, b, c ∈ A with ab = P1.
Now we organize the proof in a series of claims.
Claim 1. ϕ(P2) ∈ CI.

Since (P1 + P2)P1 = P1 and ϕ(P1) = λI, we have

0 = ϕ([[P1 + P2, P1], P1]) = [[ϕ(P1 + P2), P1], P1] = P1ϕ(P2)P2 + P2ϕ(P2)P1.

For any a12 ∈ A12, since (P1 + a12)(P1 + P2 − a12) = P1, we get

ϕ(a12) = ϕ([[P1 + a12, P1 + P2 − a12], P1])

= [[ϕ(a12),−a12], P1] + [[P1 + a12, ϕ(P2)− ϕ(a12)], P1]

= P2ϕ(a12)P1 + P1ϕ(a12)P2 + P1ϕ(P2)a12 − a12ϕ(P2)P2.

Multiplying the above equation by P1 from the left and by P2 from the right,
we obtain

P1ϕ(P2)a12 = a12ϕ(P2)P2.

It follows from Claim 1 of the proof of Theorem 2.1 that P1ϕ(P2)P1+P2ϕ(P2)P2

∈ CI. Hence ϕ(P2) ∈ CI.
Claim 2. ϕ(Aij) ⊆ Aij , 1 ≤ i 6= j ≤ 2.
Since (P1 + a12)P1 = P1 and ϕ(P1) = λI, we get

ϕ(a12) = ϕ([[P1 + a12, P1], P1]) = P1ϕ(a12)P2 + P2ϕ(a12)P1,

which implies P1ϕ(a12)P1 = P2ϕ(a12)P2 = 0. Now, for any b12 ∈ A12, we have

0 = ϕ([[P1 + b12, P1], b12])

= [[ϕ(b12), P1], b12] + [[b12, P1], ϕ(b12)]

= P2ϕ(b12)b12 − b12ϕ(b12)P1 + ϕ(b12)b12 − b12ϕ(b12).

Multiplying the above equation from both side by P2, we arrive at P2ϕ(b12)b12
= 0. Moreover, it follows that

0 = ϕ([[P1 + a12, P1], b12])

= [[ϕ(a12), P1], b12] + [[a12, P1], ϕ(b12)]

= P2ϕ(a12)b12 − b12ϕ(a12)P1 + ϕ(b12)a12 − a12ϕ(b12).
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Multiplying the equation by b12 from the right and for the fact P2ϕ(b12)b12 = 0,
we obtain b12ϕ(a12)b12 = 0. By linearizing, we get b12ϕ(a12)d12 + d12ϕ(a12)b12
= 0 for any b12, d12 ∈ A12. It is not difficult to check

P2ϕ(a12)b12ϕ(a12)[b12ϕ(a12)d12]ϕ(a12)P1

+ P2ϕ(a12)b12ϕ(a12)[d12ϕ(a12)b12]ϕ(a12)P1 = 0,

that is,
P2ϕ(a12)b12ϕ(a12)d12ϕ(a12)b12ϕ(a12)P1 = 0.

Since A is prime, we have P2ϕ(a12)b12ϕ(a12)P1 = 0. Then P2ϕ(a12)P1 = 0.
Consequently, ϕ(A12) ⊆ A12.

Similarly, we can obtain ϕ(A21) ⊆ A21.
Claim 3. There exists a linear functional f1 on A11 such that ϕ(a11) −

f1(a11)I ∈ A11 for all a11 ∈ A11.

First suppose that a11 is invertible in A11, i.e., there exists a−1
11 ∈ A11 such

that a−1
11 a11 = a11a

−1
11 = P1. Since a−1

11 a11 = P1, we have

0 = ϕ([[a−1
11 , a11], P1]) = [[ϕ(a−1

11 ), a11], P1] + [[a−1
11 , ϕ(a11)], P1].

It follows from (P2 + a−1
11 )a11 = P1 and Claim 1 that

0 = ϕ([[P2 + a−1
11 , a11], P1])

= [[ϕ(a−1
11 ), a11], P1] + [[P2 + a−1

11 , ϕ(a11)], P1]

= P1ϕ(a11)P2 + P2ϕ(a11)P1.

Moreover, for any b22 ∈ A22 and x ∈ A, since (a−1
11 + b22)a11 = P1, it is easy

to check that

0 = ϕ([[a−1
11 + b22, a11], x])

= [[ϕ(a−1
11 + b22), a11], x] + [[a−1

11 + b22, ϕ(a11)], x]

= [[ϕ(b22), a11], x] + [b22, ϕ(a11)], x],

which implies that [ϕ(b22), a11] + [b22, ϕ(a11)] = µI ∈ CI. Multiplying the
above equation from both sides by P2, we arrive at [b22, P2ϕ(a11)P2] = µP2.
By [4, Problem 230], we get [b22, P2ϕ(a11)P2] = 0. So there exists µ̃ ∈ C such
that P2ϕ(a11)P2 = µ̃P2.

If a11 is not invertible in A11, we may find a sufficiently big number n

such that nP1−a11 is invertible in A11. It follows from the preceding case that
P1ϕ(nP1−a11)P2+P2ϕ(nP1−a11)P1 = 0, and P2ϕ(nP1−a11)P2 = µ̃P2. Since
ϕ(P1) = λI, we also have P1ϕ(a11)P2+P2ϕ(a11)P1 = 0 and P2ϕ(a11)P2 = µ̄P2,
where µ̄ = nλ−µ̃. Without loss of generality, we still denote P2ϕ(a11)P2 = µ̃P2.

Thus for any a11 ∈ A11, we have

ϕ(a11) = P1ϕ(a11)P1 + P2ϕ(a11)P2 = P1ϕ(a11)P1 − µ̃P1 + µ̃I.

We define a linear functional f1 on A11 by f1(a11) = µ̃. Then combining with
the above equation, we get ϕ(a11)−f(a11)I = P1ϕ(a11)P1− µ̃P1 ∈ A11 for any
a11 ∈ A11.
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Claim 4. There exists a linear functional f2 on A22 such that ϕ(a22) −
f2(a22)I ∈ A22 for any a22 ∈ A22.

For any a22 ∈ A22, since (P1 + a22)P1 = P1, we have

0 = ϕ([[P1 + a22, P1], P1]) = P1ϕ(a22)P2 + P2ϕ(a22)P1.

The rest step is similar to the proof of Claim 3.
Now, we define a linear map ω : A → A by

ω(a) = ϕ(a) − f1(P1aP1)I − f2(P2aP2)I, ∀a ∈ A.

By Claim 2-4, we have ω(Pi) = 0, ω(Aij) ⊆ Aij , i, j = 1, 2, and ω(aij) = ϕ(aij)
for any aij ∈ Aij , 1 ≤ i 6= j ≤ 2.

In the following we shall show ω is a derivation.
Claim 5. ω(a11b12) = a11ω(b12) + ω(a11)b12 for any a11 ∈ A11, b12 ∈ A12.

If a11 is invertible in A11, then for any x12 ∈ A12 we have (a−1
11 x12 +

a−1
11 )a11 = P1. It follows that

ω(a12) = ω([[a−1
11 x12 + a−1

11 , a11], P1])

= ϕ([[a−1
11 x12 + a−1

11 , a11], P1])

= [[ϕ(a−1
11 x12 + a−1

11 ), a11], P1] + [[a−1
11 x12 + a−1

11 , ϕ(a11)], P1]

= [[ω(a−1
11 x12 + a−1

11 ), a11], P1] + [[a−1
11 x12 + a−1

11 , ω(a11)], P1]

= [[ω(a−1
11 x12), a11], P1] + [[a−1

11 x12, ω(a11)], P1]

= a11ω(a
−1
11 x12) + ω(a11)a

−1
11 x12.

Replacing b12 with a−1
11 x12, we have ω(a11b12) = a11ω(b12) + ω(a11)b12.

If a11 is not invertible in A11, we may find a sufficiently big number n

such that nP1 − a11 is invertible in A11. Then ω((nP1 − a11)a12) = (nP1 −
a11)ω(a12) + ω(nP1 − a11)a12. Clearly, P1 is invertible in A11, so we get
ω(a11b12) = a11ω(b12) + ω(a11)b12 from the above equation.

Claim 6. ω(a21b11) = a21ω(b11) + ω(a21)b11 for any a21 ∈ A21, b11 ∈ A11.

Considering a11(x21a
−1
11 + a−1

11 ) = P1 and using the same approach in Claim
5, we know that Claim 6 is true.

Claim 7. ω(a22b21) = a22ω(b21) + ω(a22)b21 for any a22 ∈ A22, b21 ∈ A21.

Due to (P1 + a22 − a22b21)(P1 + b21) = P1, we compute

−ω(b21) = ω([[P1 + a22 − a22b21, P1 + b21], P1])

= ϕ([[P1 + a22 − a22b21, P1 + b21], P1])

= [[ω(P1 + a22 − a22b21), P1 + b21], P1]

+ [[P1 + a22 − a22b21, ω(P1 + b21)], P1]

= a22ω(b21)− ω(a22b21) + ω(a22)b21 − ω(b21),

that is, ω(a22b21) = a22ω(b21) + ω(a22)b21.
Considering (P1 + a12)(P1 − b22 + a12b22) = P1, we arrive at:
Claim 8. ω(a12b22) = a12ω(b22) + ω(a12)b22 for any a12 ∈ A12, b22 ∈ A22.
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Claim 9. ω(aiibii) = aiiω(bii) + ω(aii)bii, i = 1, 2.
It is similar to Claim 7 in the proof of Theorem 2.1.
Claim 10. ω(aijbji) = aijω(bji) + ω(aij)bji for any aij , bij ∈ Aij, 1 ≤ i 6=

j ≤ 2.
Since (a12 + P1)P1 = P1, we have

ϕ(b21a12 − a12b21) = ϕ([[a12 + P1, P1], b21])

= [[ω(a12 + P1), P1], b21] + [[a12 + P1, P1], ω(b21)]

= b21ω(a12) + ω(b21)a12 − a12ω(b21)− ω(a12)b21.

Since ω(a) = ϕ(a)− f1(P1aP1)I − f2(P2aP2)I, ∀a ∈ A,

ω(b21a12 − a12b21)− f1(a12b21)I + f2(b21a12)I

= b21ω(a12) + ω(b21)a12 − a12ω(b21)− ω(a12)b21.

With the same approach as in Claim 8 in the proof of Theorem 2.1, we can get
f1(a12b21)I − f2(b21a12)I = 0. So we arrive at

ω(b21a12 − a12b21) = ω(b21)a12 + b21ω(a12)− ω(a12)b21 − a12ω(b21).

This is equivalent to ω(b21a12)=ω(b21)a12+b21ω(a12) and ω(a12b21)=ω(a12)b21
+a12ω(b21). Consequently, Claim 10 is true.

So we can conclude that ω is a derivation by Claims 5-10.
With the similar argument as in the proof of Theorem 2.1, we can verify there

exist an operator T ∈ A and a linear map f : A → CI vanishing at every second
commutator [[a, b], c] when ab = P such that δ(a) = aT−Ta+f(a), ∀a ∈ A. �
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