References
- E. Bedos and L. Tuset, Amenability and co-amenability for locally compact quantum groups, Internat. J. Math. 14 (2003), no. 8, 865-884. https://doi.org/10.1142/S0129167X03002046
- M. E. B. Bekka, Amenable unitary representations of locally compact groups, Invent. Math. 100 (2003), no. 2, 383-401.
- P. Eymard, Lalgebra de Fourier dun groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
- Z. Hu, M. Neufang, and Z.-J. Ruan, Multipliers on a new class of Banach algebras, locally compact quantum groups, and topological centres, Proc. Lond. Math. Soc. (3) 100 (2010), no. 2, 429-458. https://doi.org/10.1112/plms/pdp026
- J. Kustermans and S. Vaes, Locally compact quantum groups, Ann. Sci. Ec. Norm. Super (4) 33 (2000), no. 6, 837-934.
- J. Kustermans and S. Vaes, Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand. 92 (2003), no. 1, 68-92.
- A. T.-M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), no. 3, 161-175.
- A. T.-M. Lau and A. L. T. Paterson, Group amenability properties for von Neumann algebras, Indiana Univ. Math. J. 55 (2006), no. 4, 1363-1388. https://doi.org/10.1512/iumj.2006.55.2787
- H. Leptin, Sur lalgebre de Fourier dun groupe localement compact, C. R. Math. Acad. Sci. Paris 266 (1968), 1180-1182.
- G. J. Murphy, C*-algebras and Operator Theory, Academic Press, 1990.
- I. Namioka, Folner's conditions for amenable semi-groups, Math. Scand. 15 (1964), 18-28.
- R. Nasr-Isfahani, Fixed point characterization of left amenable Lau algebras, Int. J. Math. Math. Sci. 2004 (2004), no. 61-64, 3333-3338. https://doi.org/10.1155/S0161171204310446
- M. Ramezanpour and H. R. E. Vishki, Reiter's properties for the actions of locally compact quantum groups on von Neumann algebras, Bull. Iranian Math. Soc. 36 (2010), no. 2, 1-17, 291.
- V. Runde, Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer-Verlag, Berlin, 2002.
- V. Runde, Characterizations of compact and discrete quantum groups through second duals, J. Operator theory 60 (2008), no. 2, 415-428.
- R. Stokke, Quasi-central bounded approximate identities in group algebras of locally compact groups, Illinois J. Math. 48 (2004), no. 1, 151-170.
- R. Stokke, Amenable representations and coefficient subspaces of Fourier-Stieltjes alge-bras, Math. Scand. 98 (2006), no. 2, 182-200.
- M. Takesaki, Theory of Operator Algebras. I, II, Ency. Math. Applic. 124, 125, Springer Verlag, Berlin, 2002.
- R. Tomatsu, Amenable discrete quantum groups, J. Math. Soc. Japan 58 (2006), no. 4, 949-964. https://doi.org/10.2969/jmsj/1179759531
- A. Van Daele, Locally compact quantum groups. A von Neumann algebra approach, ArXiv:math.OA/0602212.