Bull. Korean Math. Soc. ${\bf 52}$ (2015), No. 2, pp. 505–511 http://dx.doi.org/10.4134/BKMS.2015.52.2.505

SOME UNIFORM GEOMETRICAL PROPERTIES IN BANACH SPACES

Kyugeun Cho and Chongsung Lee

ABSTRACT. In this paper, we investigate relationships among property (k- $\beta)$, weak property (β_k) , k-nearly uniformly convexity and property (A_k) .

1. Introduction

Let $(X, \|\cdot\|)$ be a real Banach space and X^* the dual space of X. By B_X and S_X , we denote the closed unit ball of X and the unit sphere of X, respectively. For a sequence (x_n) in X, we let $\operatorname{sep}(x_n) = \inf \{ \|x_n - x_m\| : n \neq m \}$. Denote by \mathbb{N} and \mathbb{R} the set of natural numbers and real numbers, respectively. For $A, B \subset \mathbb{N}$, we write A < B if $\max A < \min B$. For a Banach space X with a basis (e_n) and $x, y \in X$, we write x < y if $\operatorname{supp} x < \operatorname{supp} y$, where $\operatorname{supp} x = \{i \in \mathbb{N} : a_i \neq 0, x = \sum_{i=1}^{\infty} a_i e_i\}$.

A Banach space is said to be reflexive if the natural embedding $\eta: X \to X^{**}$ is onto. A Banach space X is said to have Banach-Saks property (BS) if any bounded sequence in the space admits a subsequence whose arithmetic means converge in norm. In similar way, we say that a Banach space X has weak Banach-Saks property (w-BS) if any weakly convergent sequence in the space admits a subsequence whose arithmetic means converge in norm. Since any weakly convergent sequence is norm bounded, it follows that Banach-Saks property implies weak Banach-Saks property. We note that weak Banach-Saks property and Banach-Saks property coincide in the reflexive Banach space. A Banach space X is said to be uniformly convex (UC) if for every $\epsilon > 0$, there exists $\delta > 0$ such that if $x, y \in B_X$ and $||x - y|| \ge \epsilon, \frac{1}{2}||x + y|| \le 1 - \delta$.

S. Kakutani [2] showed that unform convexity implies Banach-Saks property. T. Nishiura and D. Waterman [6] proved that Banach-Saks property implies reflexivity in Banach spaces.

O2015Korean Mathematical Society

Received January 17, 2014; Revised May 8, 2014.

²⁰¹⁰ Mathematics Subject Classification. 46B20.

Key words and phrases. property $(k-\beta)$, weak property (β_k) , k-nearly uniformly convexity, property (A_k) .

This work was supported by the Inha University Research Grant.

A Banach space is said to have property (A_k) if it is reflexive and there exists a number δ , $0 < \delta < 1$, such that for a weakly null sequence (x_n) , there exist $n_1 < n_2 < \cdots < n_k$ with $\left\| \frac{1}{k} \sum_{i=1}^k x_{n_i} \right\| \le 1 - \delta$. We say that X has the property (A_{∞}) if it has the property (A_k) for some $k \in \mathbb{N}$.

Let $x_1, x_2, \ldots, x_{k+1} \in X$. The k-dimensional volume enclosed by $x_1, x_2, \ldots, x_{k+1}$ is given by

$$V(x_1, x_2, \dots, x_{k+1}) = \sup \left\{ \begin{vmatrix} 1 & \cdots & 1 \\ f_1(x_1) & \cdots & f_1(x_{k+1}) \\ \vdots & \vdots \\ f_k(x_1) & \cdots & f_k(x_{k+1}) \end{vmatrix} f_i \in B_{X^*}, \ i = 1, 2, \dots, k \right\}.$$

A Banach space X is said to be k-uniformly rotund (k-UR), $k \ge 1$, if for each $\epsilon > 0$ there exists a $\delta > 0$ such that for $x_i \in B_X$ (i = 1, 2, ..., k + 1) and $V(x_1, x_2, ..., x_{k+1}) \ge \epsilon$, $\frac{1}{k+1} \left\| \sum_{i=1}^{k+1} x_i \right\| \le 1 - \delta$. J. R. Partington [7] introduced the notion of property (A_k) and show the

J. R. Partington [7] introduced the notion of property (A_k) and show the following strict implications:

$$(UC) \Rightarrow (A_2) \Rightarrow (A_3) \Rightarrow \dots \Rightarrow (A_\infty) \Rightarrow (BS)$$

A Banach space X is said to have the property $(k-\beta)$ if for each $\epsilon > 0$, there exists $\delta > 0$ such that for any $x \in B_X$ and any sequence $(x_n) \subset B_X$ with $\operatorname{sep}(x_n) > \epsilon$ there exist $n_i \in \mathbb{N}, i = 1, 2, \ldots, k$ with $n_1 < n_2 < \cdots < n_k$ such that

$$\left\|\frac{1}{k+1}\left(x+\sum_{i=1}^{k}x_{n_{i}}\right)\right\| \leq 1-\delta.$$

A Banach space X is said to be k-nearly uniformly convex (k-NUC) if for each $\epsilon > 0$, there exists $\delta > 0$ such that for any sequence $(x_n) \subset B_X$ with $\operatorname{sep}(x_n) > \epsilon$ there exist $n_i \in \mathbb{N}, i = 1, 2, \ldots, k$ with $n_1 < n_2 < \cdots < n_k$ such that

$$\left\|\frac{1}{k}\left(\sum_{i=1}^{k} x_{n_i}\right)\right\| \le 1 - \delta.$$

D. Kutzarova [3] introduced the notion of property $(k-\beta)$ and k-nearly uniformly convexity and show the following strict implications:

$$(UC) \Rightarrow (\beta_1) \Rightarrow 2\text{-}NUC \Rightarrow (\beta_2) \Rightarrow 3\text{-}NUC \Rightarrow \dots \Rightarrow (BS)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A_2 \qquad \qquad A_3 \qquad \dots$$

A Banach space X has the weak property (β_k) if it is reflexive and there exists $\delta > 0$ such that for any $x \in B_X$ and any weakly null sequence $(x_n) \subset B_X$ there

507

exist $n_i \in \mathbb{N}$, $i = 1, 2, \dots, k$ with $n_1 < n_2 < \dots < n_k$ such that

$$\left\|\frac{1}{k+1}\left(x+\sum_{i=1}^{k}x_{n_{i}}\right)\right\| \leq 1-\delta.$$

We say that X has the weak property (β_{∞}) if it has the weak property (β_k) for some $k \in \mathbb{N}$. K. G. Cho and C. S. Lee [1] introduced the notion of weak property (β_k) and show the following strict implications:

 $(UC) \Rightarrow (w-\beta_1) \Rightarrow (w-\beta_2) \Rightarrow \dots \Rightarrow (w-\beta_\infty) \Rightarrow (BS)$

In this paper, we show that the property $(k - \beta)$ implies the weak property (β_k) but the converse does not hold.

2. Main parts

We begin with the proposition:

Proposition 2.1. Let X be a Banach space.

- (1) If X has the weak property (β_k) , then it has the property (A_{k+1}) for all $k \ge 1$.
- (2) If X has the property (A_k) , then it has the weak property (β_k) for all $k \ge 2$.

Proof. (1) Choose a corresponding $\delta > 0$ according to the definition of weak property (β_k) . Let (x_n) be a weakly null sequence in B_X . Take $x = x_1 = x_{n_1}$, then for $(x_n)_{n\geq 2}$ there exist $2 \leq n_2 < n_3 < \cdots < n_{k+1}$ such that

$$\frac{1}{k+1} \left\| \sum_{i=1}^{k+1} x_{n_i} \right\| = \frac{1}{k+1} \left\| x + \sum_{i=2}^{k+1} x_{n_i} \right\| \le 1 - \delta.$$

This means that X has the property (A_{k+1}) .

(2) Choose a corresponding $\delta > 0$ according to the definition of property (A_k) . Let $x \in B_X$ and (x_n) be a weakly null sequence in B_X . Since X has the property (A_k) , there exist $n_1 < n_2 < \cdots < n_k$ such that

$$\frac{1}{k} \left\| \sum_{i=1}^{k} x_{n_i} \right\| \le 1 - \delta.$$

Then

$$\frac{1}{k+1} \left\| x + \sum_{i=1}^{k} x_{n_i} \right\| \le \frac{1}{k+1} \left(1 + k(1-\delta) \right) = 1 - \frac{k\delta}{k+1}$$

Taking $\delta_1 = \frac{k\delta}{k+1}$, we get the result.

We want to show the converses of Proposition 2.1 do not hold. We need lemma, example and proposition. The following lemma and example can be found in [4] and [7], respectively.

Lemma 2.2. l_1 -direct sum of finitely many Banach spaces with k-NUC has k-NUC.

Example 1. For $x = (a_n) \in l_2$, we define a norm $||x||_{(k)}$ by

$$||x||_{(k)} = \left[\sup_{n_1 < n_2 < \dots < n_k} \left(\sum_{i=1}^k |a_{n_i}|\right)^2 + \sum_{n \neq n_1, n_2, \dots, n_k} |a_n|^2\right]^{\frac{1}{2}}.$$

Then $||x||_2 \leq ||x||_{(k)} \leq \sqrt{k} ||x||_2$. Let $X_k = (l_2, ||\cdot||_{(k)})$. Then X_k has the property (A_{k+1}) but not the property (A_k) [7].

Proposition 2.3. The property $(k-\beta)$ implies the weak property β_k .

Proof. Let $\delta\left(\frac{1}{2}\right)$ be chosen according to the definition of $(k-\beta)$ for $\epsilon = \frac{1}{2}$. Put $\delta = \min\left\{\frac{k}{2(k+1)}, \delta\left(\frac{1}{2}\right)\right\}$. Let $x \in B_X$ and (x_n) be a weakly null sequence in B_X . If there exist $n_1 < n_2 < \cdots < n_k$ such that $||x_{n_i}|| \le \frac{1}{2}$, then $\left|\left|\frac{1}{k+1}\left(x + \sum_{i=1}^k x_{n_i}\right)\right|\right| \le \frac{1}{k+1}\left(1 + \frac{k}{2}\right) = 1 - \frac{k}{2(k+1)} \le 1 - \delta$. We now consider the case that $||x_n|| > \frac{1}{2}$ except finite n less than k. Assume $||x_n|| > \frac{1}{2}$ for all $n \in \mathbb{N}$. We note that $\liminf_{n\to\infty} ||x_n - x_m|| \ge ||x_m|| > \frac{1}{2}$ for every m. Put $n_1 = 1$. Since $\liminf_{n\to\infty} ||x_n - x_1|| \ge ||x_1|| > \frac{1}{2}$, there exists n_2 with $n_2 > n_1$ such that $||x_{n_1} - x_{n_2}|| > \frac{1}{2}$. Having chosen x_{n_1}, \ldots, x_{n_l} with $||x_{n_i} - x_{n_j}|| > \frac{1}{2}$ for $i = 1, 2, \ldots, l$, there exists n_{l+1} with $n_{l+1} > n_l$ such that $||x_{n_i} - x_{n_{l+1}}|| > \frac{1}{2}$ for $i = 1, 2, \ldots, l$.

We get a subsequence (x_{n_i}) of (x_n) with $sep(x_{n_i}) \geq \frac{1}{2}$. Then there exist $x_{n_{i_1}}, \ldots, x_{n_{i_k}}$ such that

$$\frac{1}{k+1} \left\| x + \sum_{j=1}^{k} x_{n_{i_j}} \right\| \le \delta\left(\frac{1}{2}\right) \le 1 - \delta.$$

This completes the proof.

We are ready to show that the converses of Proposition 2.1 do not hold. The techniques are same with [3].

Proposition 2.4. (1) There exists a Banach space with the property (A_{k+1}) which does not have the weak property (β_k) for each $k \ge 1$.

(2) There exists a Banach space with the weak property (β_k) which does not have the property (A_k) for each $k \geq 2$.

Proof. (1) Since l_2 is uniformly convex, it is 2-NUC. By Lemma 2.2, $(l_2 + \mathbb{R})_{l_1}$ is 2-NUC. Since 2-NUC implies the property (A_2) [3], $(l_2 + \mathbb{R})_{l_1}$ has the property (A_2) . Let (e_n) be the usual unit bases of l_2 . Then $((e_n, 0))$ is weakly null in $(l_2 + \mathbb{R})_{l_1}$. But for $(0, 1) \in (l_2 + \mathbb{R})_{l_1}$, $||(0, 1) + (e_n, 0)||_{(l_2 + \mathbb{R})_{l_1}} = ||(e_n, 1)||_{(l_2 + \mathbb{R})_{l_1}} = 2$. This means that $(l_2 + \mathbb{R})_{l_1}$ does not have the weak property (β_1) .

For $k \geq 2$, X_k is k-UR [5]. Since k-UR implies $(k-\beta)$ [3], X_k is $(k-\beta)$. Since $(k-\beta)$ implies (k+1)-NUC [3], X_k is (k+1)-NUC. By Lemma 2.2, $(X_k + \mathbb{R})_{l_1}$ is (k+1)-NUC. Since (k+1)-NUC implies the property A_{k+1} [3], $(X_k + \mathbb{R})_{l_1}$ has the property A_{k+1} .

We note that X_k does not have the property A_k [7]. Then for all $\delta > 0$, there exists weakly null sequence $(x_n(\delta))$ in B_{X_k} such that $\frac{1}{k} \left\| \sum_{i=1}^k x_{n_i}(\delta) \right\|_{(k)} > 1-\delta$ for all $n_1 < n_2 < \cdots < n_k$. Let $y = (0,1), y_n = (x_n(\delta), 0)$. Then $y, y_n \in B_{(X_k + \mathbb{R})_{l_1}}$, (y_n) is weakly null in $(X_k + \mathbb{R})_{l_1}$ and

$$\frac{1}{k+1} \left\| y + \sum_{i=1}^{k} y_{n_i} \right\|_{(X_k + \mathbb{R})_{l_1}} = \frac{1}{k+1} \left(1 + \left\| \sum_{i=1}^{k} x_{n_i}(\delta) \right\|_{(k)} \right)$$
$$\geq \frac{1}{k+1} \left(1 + k(1-\delta) \right) = 1 - \frac{k}{k+1} \delta$$

for all $n_1 < n_2 < \cdots < n_k$. This means that $(X_k + \mathbb{R})_{l_1}$ does not have the weak property (β_k) .

(2) X_k does not have the property A_k [7] and is k-UR [5]. Since k-UR implies $(k-\beta)$ [3], X_k is $(k-\beta)$. By Proposition 2.3, X_k has the weak property β_k . This completes the proof.

We finally investigate the converse of Proposition 2.3.

Example 2. Let $X = \left(\prod_{p\geq 2} l_p\right)_2$ and $(e_n^{(p)})$ be a usual unit basis for l_p . For $n = 0, 1, 2, \ldots$ and $1 \leq p \leq n+1$, let $f_{\frac{n(n+1)}{2}+p} = (0, \ldots, 0, e_{n-p+2}^{(p+1)}, 0, \ldots)$ with all zero except *p*th coordinate $e_{n-p+2}^{(p+1)}$. Then (f_i) is a basis for $X = \left(\prod_{p\geq 2} l_p\right)_2$.

We need a lemma.

Lemma 2.5. Let $x, y \in B_{\left(\prod_{p\geq 2} l_p\right)_2}$ with x < y. Then $||x+y|| \le \sqrt{2}$. *Proof.* Let $x = \sum_{i=1}^n a_i f_i$ and $y = \sum_{i=n+1}^\infty a_i f_i$. For $p \ge 2$, let $A_i = \begin{cases} i \in \text{supp } x : i = m(m+1) \\ i \in \text{supp } x : i = m(m+1) \\ i \in \text{supp } x : i = m(m+1) \end{cases}$

$$A_p = \left\{ i \in \text{supp } x : i = \frac{m(m+1)}{2} + p \text{ for } m \ge 0 \right\}$$

and

$$B_p = \left\{ i \in \text{supp } y : i = \frac{m(m+1)}{2} + p \text{ for } m \ge 0 \right\}.$$

Then for all $p \ge 2$, we know $A_p < B_p$ and

$$\|x+y\|^2 = \sum_{p=2}^{\infty} \left\| \sum_{i \in A_p} a_i e_i^{(p)} + \sum_{i \in B_p} a_i e_i^{(p)} \right\|_p^2$$

$$= \sum_{p=2}^{\infty} \left(\sum_{i \in A_p \cup B_p} |a_i|^p \right)^{\frac{2}{p}}$$

$$\leq \sum_{p=2}^{\infty} \left(\sum_{i \in A_p} |a_i|^p \right)^{\frac{2}{p}} + \sum_{p=2}^{\infty} \left(\sum_{i \in B_p} |a_i|^p \right)^{\frac{2}{p}}$$

$$= ||x||^2 + ||y||^2 = 2.$$

This completes the proof.

Using the above lemma, we get the following.

Proposition 2.6. There exists a Banach space with the weak property (β_1) which is not k-NUC for all $k \geq 2$.

Proof. Let $X = \left(\prod_{p\geq 2} l_p\right)_2$. Let $x = \sum_{i=1}^{\infty} a_i f_i$, $x_n = \sum_{i=1}^{\infty} b_i^{(n)} f_i \in B_X$ and (x_n) be a weakly null sequence in B_X . Then there exists $N \in \mathbb{N}$ such that $\left\|\sum_{i=N+1}^{\infty} a_i f_i\right\| \leq \frac{1}{4}$. Since (x_n) be a weakly null sequence in B_X , there exists $n_0 \in \mathbb{N}$ such that $\left\|\sum_{i=1}^{N} b_i^{(n_0)} f_i\right\| \leq \frac{1}{4}$. Then by Lemma 2.5,

$$\begin{aligned} \|x + x_{n_0}\| &\leq \left\| \sum_{i \leq N} a_i f_i + \sum_{i \geq N+1} b_i^{(n_0)} f_i \right\| + \left\| \sum_{i=N+1}^{\infty} a_i f_i \right\| + \left\| \sum_{i=1}^{N} b_i^{(n_0)} f_i \right\| \\ &\leq \sqrt{2} + \frac{1}{2} = 2\left(1 - \left(\frac{3}{4} - \frac{\sqrt{2}}{2}\right) \right). \end{aligned}$$

Taking $\delta = \frac{3}{4} - \frac{\sqrt{2}}{2}$, $X = \left(\prod_{p \ge 2} l_p\right)_2$ has the weak property (β_1). On the other hand, X fails to have an equivalent NUC norm [3]. We get the result. \Box

The above proposition also implies that there exists a space which satisfies the weak property (β_1) but does not satisfy the property $(k-\beta)$ for all k. By [1], [3], [7], Propositions 2.1, 2.3, 2.4 and 2.6, we finally get the following strict implications:

Acknowledgment. We are grateful to the referee for the careful reading of the manuscript and very useful comments.

References

- [1] K. G. Cho and C. S. Lee, Weak property (β_k) , Korean J. Math. **20** (2012), no. 4, 415–422.
- [2] S. Kakutani, Weak convergence in uniformly convex spaces, Tôhoku Math. J. 45 (1938), 347–354.
- [3] D. Kutzarova, k-beta and k-Nearly Uniformly Convex Banach spaces, J. Math. Anal. Appl. 162 (1991), no. 2, 322–338.
- [4] D. Kutzarova and T. Landes, NUC and related properties of direct sums, Bolletino U.M.I.(7)8-A (1994), 45–54.
- B.-L. Lin and X.-Y. Yu, On the k-uniform rotund and the fully convex Banach spaces, J. Math. Anal. Appl. 110 (1985), no. 2, 407–410.
- [6] T. Nishiura and D. Waterman, *Reflexivity and summability*, Studia Math. 23 (1963), 53–57.
- [7] J. R. Partington, On the Banach-Saks property, Math. Proc. Cambridge Philos. Soc. 82 (1977), no. 3, 369–374.

Kyugeun Cho Bangmok College of General Education Myong Ji University Yong-In 449-728, Korea *E-mail address*: kgjo@mju.ac.kr

CHONGSUNG LEE DEPARTMENT OF MATHEMATICS EDUCATION INHA UNIVERSITY INCHON 402-751, KOREA *E-mail address*: csle@inha.ac.kr