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MULTIDIMENSIONAL BSDES WITH

UNIFORMLY CONTINUOUS GENERATORS

AND GENERAL TIME INTERVALS

Shengjun Fan, Yanbin Wang, and Lishun Xiao

Abstract. This paper is devoted to solving a multidimensional back-
ward stochastic differential equation with a general time interval, where
the generator is uniformly continuous in (y, z) non-uniformly with respect
to t. By establishing some results on deterministic backward differential
equations with general time intervals, and by virtue of Girsanov’s theo-
rem and convolution technique, we prove a new existence and uniqueness
result for solutions of this kind of backward stochastic differential equa-
tions, which extends the results of [8] and [6] to the general time interval
case.

1. Introduction

In this paper, we are concerned with the following multidimensional back-
ward stochastic differential equation (BSDE for short in the remaining):

(1) yt = ξ +

∫ T

t

g(s, ys, zs) ds−

∫ T

t

zs dBs, t ∈ [0, T ],

where T satisfies 0 ≤ T ≤ +∞ called the terminal time; ξ is a k-dimensional
random vector called the terminal condition; the random function g(ω, t, y, z) :
Ω× [0, T ]×Rk×Rk×d 7→ Rk is progressively measurable for each (y, z), called
the generator of BSDE (1); and B is a d-dimensional Brownian motion. The so-
lution (yt, zt)t∈[0,T ] is a pair of adapted processes. The triple (ξ, T, g) is called
the parameters of BSDE (1). We also denote by BSDE (ξ, T, g) the BSDE
with the parameters (ξ, T, g). The nonlinear BSDEs were initially introduced
by Pardoux and Peng [12]. They proved an existence and uniqueness result
for solutions of multidimensional BSDEs under the assumptions that the gen-
erator g is Lipschitz continuous in (y, z) uniformly with respect to t, where
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the terminal time T is a finite constant. Since then, BSDEs have attracted
more and more interesting and many applications on BSDEs have been found
in mathematical finance, stochastic control, partial differential equations and
so on (See [4] for details).

Many works including [1], [2], [6], [8], [9], [10], [11] and [13], see also the
references therein, have weakened the Lipschitz condition on the generator g to
extend the existence and uniqueness result obtained in [12]. In particular, by
virtue of some results on deterministic backward differential equations (DBDEs
for short in the remaining), Hamadène [8] proved the existence for solutions
of multidimensional BSDEs when the generator g is uniformly continuous in
(y, z). Furthermore, by establishing an estimate for a linear-growth function,
Fan, Jiang, and Davison [6] obtained the uniqueness result under the same
assumptions as those in [8]. It should be pointed out that all these works
mentioned above only deal the BSDEs with finite time intervals.

Chen and Wang [3] first extended the terminal time to the general case and
proved the existence and uniqueness for solutions of BSDEs under the assump-
tions that the generator g is Lipschitz continuous in (y, z) non-uniformly with
respect to t, which improves the result of [12] to the infinite time interval case.
Furthermore, [5] and [7] relaxed the Lipschitz condition of [3] and obtained
two existence and uniqueness results for solutions of BSDEs with general time
intervals, which generalizes the results of [11] and [10] respectively.

In this paper, by establishing some results on solutions of DBDEs with gen-
eral time intervals and by virtue of Girsanov’s theorem and convolution tech-
nique, we put forward and prove a general existence and uniqueness result for
solutions of multidimensional BSDEs with general time intervals and uniformly
continuous generators in (y, z) (see Theorem 7 in Section 3), which extends the
results of [8] and [6] to the general time interval case. It should be mentioned
that the uniform continuous assumptions for the generator are not necessarily
uniform with respect to t in this result.

We would like to mention that some new troubles arise naturally when we
change the terminal time of the BSDE and the DBDE from the finite case to
the general case. For example, in the case of T = +∞, the integration of a

constant over [0, T ] is not finite any more,
∫ T

0 u(t) dt ≤ C supt∈[0,T ] u(t) may

not hold any longer, and
∫ T

0 v2(s) ds < +∞ can not imply
∫ T

0 v(s) ds < +∞.
All these troubles are well overcome in this paper. Furthermore, although the
whole idea of the proof for the existence and uniqueness of Theorem 7 originates
from [8] and [6] respectively, some different arguments from those employed in
[8] is used to prove the existence part of Theorem 7. More specifically, in the
Step 1 of the proof for the existence part of Theorem 7, the proof of Lemma
12 is completely different from that of the corresponding result in [8], and we
do not use the iteration technique used in [8] for solutions of BSDE (ξ, T, gn)
(see (19) in Section 4). In addition, the Step 3 of our proof for the existence
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part is also very different from that in [8]. As a result, the proof procedure is
simplified at certain degree.

This paper is organized as follows. Section 2 introduces some usual notations
and establishes some results on the solutions of DBDEs with general time
intervals. Section 3 is devoted to stating the existence and uniqueness result
on BSDEs — Theorem 7, and Section 4 gives the detailed proof of Theorem 7.

2. Notations and some results on DBDEs

First of all, let (Ω,F ,P) be a probability space carrying a standard d-
dimensional Brownian motion (Bt)t≥0 and let (Ft)t≥0 be the natural σ-algebra
filtration generated by (Bt)t≥0. We assume that FT = F and (Ft)t≥0 is right-
continuous and complete. In this paper, the Euclidean norm of a vector y ∈ Rk

will be defined by |y|, and for a k×d matrix z, we define |z| =
√

Tr(zz∗), where
and hereafter z∗ represents the transpose of z. Let 〈x, y〉 represent the inner
product of x, y ∈ Rk.

Let L2(Ω,FT ,P;Rk) be the set of Rk-valued and FT -measurable random
variables ξ such that ‖ξ‖2

L2 := E[|ξ|2] < +∞ and let S2(0, T ;Rk) denote the

set of Rk-valued, adapted and continuous processes (Yt)t∈[0,T ] such that

‖Y ‖S2 :=

(

E

[

sup
t∈[0,T ]

|Yt|
2

])1/2

< +∞.

Moreover, let M2(0, T ;Rk×d) denote the set of (equivalent classes of) (Ft)-
progressively measurable Rk×d-valued processes (Zt)t∈[0,T ] such that

‖Z‖M2 :=

(

E

[

∫ T

0

|Zt|
2 dt

])1/2

< +∞.

Obviously, S2(0, T ;Rk) is a Banach space and M2(0, T ;Rk×d) is a Hilbert
space.

Finally, let S be the set of all non-decreasing continuous functions ρ(·) :
R+ 7→ R+ with ρ(0) = 0 and ρ(x) > 0 for all x > 0, where and hereafter
R+ := [0,+∞).

As mentioned above, we will deal only with the multidimensional BSDE
which is an equation of type (1), where the terminal condition ξ is FT -measur-
able, the terminal time T satisfies 0 ≤ T ≤ +∞, and the generator g is (Ft)-
progressively measurable for each (y, z). In this paper, we use the following
definition.

Definition 1. A pair of processes (yt, zt)t∈[0,T ] taking values in Rk ×Rk×d is

called a solution of BSDE (1), if (yt, zt)t∈[0,T ] belongs to the space S2(0, T ;Rk)

×M2(0, T ;Rk×d) and dP− a.s., BSDE (1) holds true for each t ∈ [0, T ].

The following Lemma 2 comes from [10], which will be used later.
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Lemma 2. Let p ∈ N, f(·) : Rp 7→ R be a continuous and linear-growth

function, i.e., there exists a positive constant K such that |f(x)| ≤ K(1 + |x|)
for all x ∈ Rp. Then fn(x) = infy∈Rp{f(y)+n|x− y|}, x ∈ Rp, is well defined

for n ≥ K and satisfies

(i) Linear growth: for each x ∈ Rp, |fn(x)| ≤ K(1 + |x|);
(ii) Monotonicity in n: for each x ∈ Rp, fn(x) increases in n;
(iii) Lipschitz continuous: for each x1, x2 ∈ Rp, we have |fn(x1)−fn(x2)| ≤

n|x1 − x2|;
(iv) Strong convergence: if xn → x, then fn(xn) → f(x) as n → +∞.

In the following, we will establish some propositions on DBDEs with general
time intervals, which will play important roles in the proof of our main result.

Proposition 3. Let 0 ≤ T ≤ +∞ and f(t, y) : [0, T ] × R 7→ R satisfy the

following two assumptions:

(B1) there exists a function u(·) : R+ 7→ R+ with
∫ T

0 u(t) dt < +∞ such

that for each y1, y2 ∈ R and t ∈ [0, T ],

|f(t, y1)− f(t, y2)| ≤ u(t)|y1 − y2|;

(B2)
∫ T

0
|f(t, 0)| dt < +∞.

Then for each δ ∈ R the following DBDE

(2) yt = δ +

∫ T

t

f(s, ys) ds, t ∈ [0, T ],

has a unique continuous solution (yt)t∈[0,T ] such that supt∈[0,T ] |yt| < +∞.

Proof. For each β(·) : R+ 7→ R+ such that
∫ T

0 β(t) dt < +∞, let Hβ(·) denote
the set of the continuous functions (yt)t∈[0,T ] such that

‖y‖β(·) :=

(

sup
t∈[0,T ]

[

e−
∫

T
t

β(r) dr|yt|
2
]

)1/2

< +∞.

It is easy to verify that Hβ(·) is a Banach space. Note that for any y· ∈ Hβ(·),
in view of (B1) and (B2),

∫ T

0

|f(t, yt)| dt ≤

∫ T

0

u(t)|yt| dt+

∫ T

0

|f(t, 0)| dt

≤

∫ T

0

u(t) dt ·
[

e
∫

T
0

β(r) dr‖y‖β(·)

]

+

∫ T

0

|f(t, 0)| dt < +∞.

For any y· ∈ Hβ(·), define

Yt := δ +

∫ T

t

f(s, ys) ds, t ∈ [0, T ].
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Then we have

‖Y ‖β(·) =

√

sup
t∈[0,T ]

[

e−
∫ T
t

β(r) dr|Yt|2
]

≤ sup
t∈[0,T ]

|Yt|

≤ |δ|+

∫ T

0

|f(t, yt)| dt < +∞.

Thus, we have constructed a mapping Φ : Hβ(·) 7→ Hβ(·) such that Φ(yt) = Yt

for each t ∈ [0, T ]. Next we prove that this mapping is strictly contractive
when β(·) is chosen appropriately.

Take y1
·
, y2

·
∈ Hβ(·) and assume that Φ(y1t ) = Y 1

t , Φ(y
2
t ) = Y 2

t for each

t ∈ [0, T ]. Let us set Ŷ· := Y 1
·
− Y 2

·
, ŷ· := y1

·
− y2

·
. Then we have

d
[

e−
∫ T
s

β(r) dr|Ŷs|
2
]

= e−
∫ T
s

β(r) dr
(

β(s)|Ŷs|
2 ds+ 2Ŷs dŶs

)

= e−
∫

T
s

β(r) dr
(

β(s)|Ŷs|
2 ds− 2Ŷs(f(s, y

1
s)− f(s, y2s)) ds

)

,

from which it follows that

e−
∫ T
t

β(r) dr|Ŷt|
2 =

∫ T

t

e−
∫ T
s

β(r) dr
[

2Ŷs

(

f(t, y1s)− f(t, y2s)
)

− β(s)|Ŷs|
2
]

ds.

By (B1) and the inequality 2ab ≤ λa2 + b2/λ (λ > 0) we get that

e−
∫

T
t

β(r) dr|Ŷt|
2 ≤

∫ T

t

e−
∫

T
s

β(r) dr
[

2
√

u(s)|Ŷs|
√

u(s)|ŷs| − β(s)|Ŷs|
2
]

ds

≤

∫ T

t

e−
∫

T
s

β(r) dr

[

(

λu(s)− β(s)
)

|Ŷs|
2 +

u(s)

λ
|ŷs|

2

]

ds,

from which it follows that, with choosing λ > 4
∫ T

0 u(s) ds and β(s) = λu(s),

‖Ŷ ‖2β(·) ≤
1

λ

∫ T

0

e−
∫ T
s

β(r) dru(s)|ŷs|
2 ds

≤
1

λ
sup

t∈[0,T ]

[

e−
∫ T
t

β(r) dr|ŷt|
2
]

∫ T

0

u(s) ds <
1

4
‖ŷ‖2β(·).

So ‖Ŷ ‖β(·) <
1
2‖ŷ‖β(·), which implies that Φ is a contractive mapping fromHβ(·)

toHβ(·). Then the conclusion follows from the fixed point theorem immediately.
�

From the proof of Proposition 3, we can directly obtain the following Propo-
sition 4.

Proposition 4. Assume 0 ≤ T ≤ +∞, f satisfies (B1) and (B2), (yt)t∈[0,T ]

is the unique continuous solution of DBDE (2) such that supt∈[0,T ] |yt| < +∞,
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C is an arbitrary constant and ynt is defined recursively as follows, for each

n ∈ N and δ ∈ R,

y1t = C; yn+1
t = δ +

∫ T

t

f(s, yns ) ds, t ∈ [0, T ].

Then ynt → yt as n → +∞ for each t ∈ [0, T ].

Proposition 5 illustrates the comparison theorem for solutions of DBDE with
general time intervals.

Proposition 5. Let 0 ≤ T ≤ +∞, f and f ′ satisfy (B1)–(B2), (yt)t∈[0,T ] and

(y′t)t∈[0,T ] with supt∈[0,T ]

(

|yt|+ |y′t|
)

< +∞ satisfy respectively DBDE (2) and

the following DBDE, for some δ′ ∈ R,

y′t = δ′ +

∫ T

t

f ′(s, y′s) ds, t ∈ [0, T ].

Assume that f(t, y′t) ≥ f ′(t, y′t) for each t ∈ [0, T ]. Then, we have

(i) (Comparison theorem) if δ ≥ δ′, then yt ≥ y′t for each t ∈ [0, T ];
(ii) (Strict comparison theorem) if δ > δ′, then yt > y′t for each t ∈ [0, T ].

Proof. For each t ∈ [0, T ], let us set

a(t) :=







f(t, yt)− f(t, y′t)

yt − y′t
, yt 6= y′t;

0, yt = y′t,

b(t) := f(t, y′t)− f ′(t, y′t) and ŷt := yt − y′t. From (B1) and (B2) we can deduce

that
∫ T

0 |a(s)| ds ≤
∫ T

0 u(s) ds < +∞ and
∫ T

0 b(s) ds < +∞. Then we have

ŷt = δ − δ′ +

∫ T

t

(

f(s, ys)− f(s, y′s) + f(s, y′s)− f ′(s, y′s)
)

ds

= δ − δ′ +

∫ T

t

a(s)ŷs ds+

∫ T

t

b(s) ds, t ∈ [0, T ].

As a result, in view of the conditions that δ ≥ δ′ and b(t) ≥ 0 for each t ∈ [0, T ],

ŷt = e
∫

T
t

a(s) ds

[

δ − δ′ +

∫ T

t

b(s)e
∫

T
s

a(r) dr ds

]

≥ 0, t ∈ [0, T ].

Furthermore, if δ > δ′, then ŷt > 0 for each t ∈ [0, T ]. The proof is then
completed. �

Proposition 6. Let 0 ≤ T ≤ +∞, u(·) be defined in (B1) and ϕ(·) : R+ 7→ R+

be a continuous function such that ϕ(x) ≤ ax+ b for all x ∈ R+, where a and

b are two given nonnegative constants. Then for each δ ∈ R+, the following

DBDE

(3) yδt = δ +

∫ T

t

u(s)ϕ(yδs) ds, t ∈ [0, T ],
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has a solution (yδt )t∈[0,T ] such that supt∈[0,T ] |y
δ
t | < +∞. In addition,

(i) if δ > 0 and ϕ(x) > 0 for all x > 0, then DBDE (3) has a unique

solution;
(ii) if δ = 0 and ϕ(·) ∈ S with

∫

0+
ϕ−1(x) dx = +∞, then DBDE (3) has

a unique solution yt ≡ 0.

Proof. Let ϕn(x) := infy∈R{ϕ(y) + n|x − y|} with ϕ(y) = ϕ(|y|) for y ∈ R.
Then it follows from Lemma 2 and Proposition 3 that ϕn(x) is well defined on
R for each n ≥ a, and for each n ≥ a, the following two DBDEs

(4) y
n,δ
t = δ +

∫ T

t

u(s)ϕn(y
n,δ
s ) ds, t ∈ [0, T ]

and

yδt = δ +

∫ T

t

(

au(s)yδs + bu(s)
)

ds, t ∈ [0, T ]

have, respectively, unique solutions yn,δt and yδt with supt∈[0,T ] |y
n,δ
t | < +∞ and

supt∈[0,T ] |y
δ
t | < +∞. Clearly, yn,δt ≥ 0 and yδt ≥ 0 for each t ∈ [0, T ] and n ≥ a.

By Proposition 5 and the fact that ϕn ≤ ϕn+1, we have yn,δ ≤ yn+1,δ ≤ yδ.

Therefore, for each t ∈ [0, T ], the limit of the sequence {yn,δt }+∞

n=a must exist,
we denote it by yδt . In view of (i) and (iv) in Lemma 2, using Lebesgue’s
dominated convergence theorem we can obtain that

lim
n→+∞

∫ T

0

u(s)ϕn(y
n,δ
s ) ds =

∫ T

0

u(s)ϕ(yδs) ds =

∫ T

0

u(s)ϕ(yδs) ds.

Thus, by passing to the limit in both sides of DBDE (4) we deduce that

yδt = δ +

∫ T

t

u(s)ϕ(yδs) ds, t ∈ [0, T ],

which means that yδt is a solution of DBDE (3).
Let us now suppose that δ > 0 and ϕ(x) > 0 for all x > 0. For each z ≥ δ, set

G(z) :=
∫ 1

z
ϕ−1(x) dx. It is easy to see that −∞ = G(+∞) < G(z1) < G(z2) <

G(δ) for each z1 > z2 > δ. Then the inverse function of G(z) must exist, we
denote it by G−1(u) for u ≤ G(δ). Let yδt be a solution of DBDE (3). It is

obvious that yδt ≥ δ and dG(yδt ) = u(t) dt. Hence, G(yδT )−G(yδt ) =
∫ T

t
u(s) ds,

which implies that yδt = G−1
(

G(δ)−
∫ T

t
u(s) ds

)

for each t ∈ [0, T ]. The proof
of (i) is then completed.

Finally, we prove that (ii) is also right. Assume that δ = 0 and ϕ(·) ∈ S with
∫

0+
ϕ−1(x) dx = +∞. For each z > 0, set H(z) :=

∫ 1

z
ϕ−1(x) dx. It is clear

that −∞ = H(+∞) < H(z1) < H(z2) < H(0) = +∞ for each z1 > z2 > 0.
Then the inverse function of H(z) must exist, we denote it by H−1(u) for each
u ∈ R. Now let y0t be a continuous solution of DBDE (3). Then y0t ≥ 0 and
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dH(y0t ) = u(t) dt. Hence, for each 0 ≤ t ≤ t1 < T ,

y0t = H−1

(

H(y0t1)−

∫ t1

t

u(s) ds

)

.

Furthermore, noticing that H(y0t1) → H(y0T ) = H(0) = +∞ as t1 → T and

H−1(+∞) = 0, we know that y0t = 0 for each t ≤ T . Therefore, DBDE (3) has
a unique solution yt ≡ 0. �

3. Main result

In this section, we will state the main result of this paper. Let us first
introduce the following assumptions with respect to the generator g of BSDE
(1), where 0 ≤ T ≤ +∞.

(H1) g is uniformly continuous in y non-uniformly with respect to t, i.e.,

there exist a deterministic function u(·) : [0, T ] 7→ R+ with
∫ T

0
u(t) dt

< +∞ and a linear-growth function ρ(·) ∈ S such that dP× dt− a.e.,
for each y1, y2 ∈ Rk and z ∈ Rk×d,

|g(ω, t, y1, z)− g(ω, t, y2, z)| ≤ u(t)ρ(|y1 − y2|);

Furthermore, we assume that
∫

0+
ρ−1(u) du = +∞;

(H2) g is uniformly continuous in z non-uniformly with respect to t, i.e.,

there exist a deterministic function v(·) : [0, T ] 7→ R+ with
∫ T

0

(

v(t) +

v2(t)
)

dt < +∞ and a linear-growth function φ(·) ∈ S such that dP×

dt− a.e., for each y ∈ Rk and z1, z2 ∈ Rk×d,

|g(ω, t, y, z1)− g(ω, t, y, z2)| ≤ v(t)φ(|z1 − z2|);

(H3) For any i = 1, . . . , k, gi(ω, t, y, z), the ith component of g, depends only
on the ith row of z;

(H4) E

[

(

∫ T

0 |g(ω, t, 0, 0)| dt
)2
]

< +∞.

In the sequel, we denote the linear-growth constant for ρ(·) and φ(·) in (H1)
and (H2) by A > 0, i.e., ρ(x) ≤ A(1 + x) and φ(x) ≤ A(1 + x) for all x ∈ R+.
In the remaining of this paper, we put an i at upper left of y ∈ Rk, z ∈ Rk×d

to represent the ith component of y and the ith row of z, like iy and iz.
The main result of this paper is the following Theorem 7, whose proof will

be given in the next section.

Theorem 7. Assume that 0 ≤ T ≤ +∞ and g satisfies (H1)–(H4). Then for

each ξ ∈ L2(Ω,FT ,P;Rk), BSDE (1) has a unique solution.

Remark 8. In the corresponding assumptions in [8] and [6] the u(t), v(t) ap-
pearing in (H1) and (H2) are bounded by a constant c > 0, and T is a finite
real number. However, in our framework the u(t), v(t) may be unbounded. In
addition, Theorem 7 also considers the case of T = +∞. Therefore, Theorem
7 generalizes the corresponding results in [8] and [6].
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Example 9. Let 0 ≤ T ≤ +∞, and for each i = 1, . . . , k and (ω, t, y, z) ∈
Ω× [0, T ]×Rk ×Rk×d, define the generator g = (g1, . . . , gk) by

gi(ω, t, y, z) = f1(t)
(

h(|y|) + 1
)

+ f2(t)
√

|iz|+ |Bt(ω)|,

where

f1(t) =
1
√
t
10<t<δ +

1
√
1 + t2

1δ≤t≤T ,

f2(t) =
1
4
√
t
10<t<δ +

1

(1 + t)2
1δ≤t≤T ,

h(x) = x ln
1

x
10≤x≤δ + [h′(δ−)(x− δ) + h(δ)]1x>δ,

with δ small enough. Since h(0) = 0 and h is concave and increasing, we
have h(x1 + x2) ≤ h(x1) + h(x2) for all x1, x2 ∈ R+, which implies that
|h(x1)− h(x2)| ≤ h(|x1 − x2|). Thus, note that

∫

0+

1

x ln 1
x

dx = +∞.

We know that the generator g satisfies assumptions (H1)–(H4) with u(t) =
f1(t), v(t) = f2(t). It then follows from Theorem 7 that for each ξ ∈ L2(Ω,FT ,
P;Rk), BSDE (1) has a unique solution (yt, zt)t∈[0,T ].

It should be mentioned that the above conclusion can not be obtained by
the result of [8], [6] and other existing results.

4. Proof of the main result

This section will give the proof of our main result — Theorem 7. Before
starting the proof, let us first introduce the following Lemma 10, which comes
from Lemma 1.1 and Theorem 1.2 in [3]. Note that Lemma 10 remains valid
in the multidimensional case since their arguments are done via a standard
contraction combined with a priori estimates without using the comparison
theorem. The following assumption will be used in Lemma 10, where we sup-
pose 0 ≤ T ≤ +∞:

(A1) There exist two deterministic functions u(·), v(·) : [0, T ] 7→ R+ with
∫ T

0

(

u(t) + v2(t)
)

dt < +∞ such that dP × dt − a.e., for each y1,

y2 ∈ Rk and z1, z2 ∈ Rk×d,

|g(t, y1, z1)− g(t, y2, z2)| ≤ u(t)|y1 − y2|+ v(t)|z1 − z2|.

Lemma 10 (Theorem 1.2 in [3]). Assume that 0 ≤ T ≤ +∞ and g satisfies

(A1) and (H4). Then for each ξ ∈ L2(Ω,FT ,P;Rk), BSDE (1) has a unique

solution (yt, zt)t∈[0,T ].
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4.1. Proof of the uniqueness part of Theorem 7

The idea of the proof of this part is partly motivated by [6]. Let (y1t , z
1
t )t∈[0,T ]

and (y2t , z
2
t )t∈[0,T ] be two solutions of BSDE (1). Then we have the following

Lemma 11.

Lemma 11. The process (y1t −y2t )t∈[0,T ] is uniformly bounded, i.e., there exists

a positive constant C1 > 0 such that

(5) dP× dt− a.e., |y1t − y2t | ≤ C1.

Moreover, for each n ∈ N, i = 1, 2, . . . , k and 0 ≤ r ≤ t ≤ T , we have

(6) En,i
[

|iy1t −
iy2t |

∣

∣Fr

]

≤ an +

∫ T

t

En,i
[

u(s)ρ(|y1s − y2s |)
∣

∣Fr

]

ds,

where

an = φ

(

2A

n+ 2A

)∫ T

0

v(s) ds,

and En,i[X |Ft] represents the conditional expectation of random variable X

with respect to Ft under a probability measure Pn,i on (Ω,F), which depends

on n and i, and which is absolutely continuous with respect to P.

Proof. Using Itô’s formula to |y1t − y2t |
2 we arrive, for each t ∈ [0, T ], at

|y1t − y2t |
2 +

∫ T

t

|z1s − z2s |
2 ds = 2

∫ T

t

〈y1s − y2s , g(s, y
1
s , z

1
s)− g(s, y2s , z

2
s )〉ds

− 2

∫ T

t

〈y1s − y2s , (z
1
s − z2s) dBs〉.(7)

The inner product term including g can be enlarged by (H1)–(H2) and the
basic inequality 2ab ≤ 2a2 + b2/2 as follows:

2〈y1s − y2s , g(s, y
1
s , z

1
s)− g(s, y2s , z

2
s )〉

≤ 2|y1s − y2s ||g(s, y
1
s , z

1
s)− g(s, y2s , z

1
s ) + g(s, y2s , z

1
s )− g(s, y2s , z

2
s)|

≤ 2|y1s − y2s |
(

Au(s)|y1s − y2s |+Av(s)|z1s − z2s |+Au(s) +Av(s)
)

≤ B(s)|y1s − y2s |
2 +

1

2
|z1s − z2s |

2 +Au(s) +Av(s),

where B(s) = 2Au(s) + 2A2v2(s) + Au(s) + Av(s). Putting the previous in-
equality into (7) we can obtain that for each t ∈ [0, T ],

|y1t − y2t |
2 ≤

∫ T

t

B(s)|y1s − y2s |
2 ds− 2

∫ T

t

〈y1s − y2s , (z
1
s − z2s) dBs〉+ C,
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where C =
∫ T

0 A(u(s)+v(s)) ds. Note that both (y1t , z
1
t )t∈[0,T ] and (y2t , z

2
t )t∈[0,T ]

belong to the process space S2(0, T ;Rk)×M2(0, T ;Rk×d). By the Burkholder-
Davis-Gundy (BDG for short in the remaining) inequality and Hölder’s inequal-
ity we have that there exists a positive constant K ′ > 0 such that

E

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

〈y1s − y2s , (z
1
s − z2s ) dBs

∣

∣

∣

∣

]

≤ K ′E





√

∫ T

0

|y1s − y2s |
2|z1s − z2s |

2 ds





≤ K ′

√

√

√

√E

[

sup
t∈[0,T ]

|y1t − y2t |
2

]

√

√

√

√E

[

∫ T

0

|z1s − z2s |
2 ds

]

< +∞,

which implies that (
∫ t

0 〈y
1
s − y2s , (z

1
s − z2s ) dBs〉)t∈[0,T ] is an (Ft,P)-martingale.

Then we have that for each 0 ≤ r ≤ t ≤ T ,

E
[

|y1t − y2t |
2
∣

∣Fr

]

≤

∫ T

t

B(s)E
[

|y1s − y2s |
2
∣

∣Fr

]

ds+ C.

By Lemma 4 in [7] we have

E
[

|y1t − y2t |
2
∣

∣Fr

]

≤ Ce
∫ T
0

B(s) ds := (C1)
2,

which yields (5) after taking r = t.
In the sequel, by (H3) we have that for each t ∈ [0, T ],

iy1t −
iy2t =

∫ T

t

(

gi(s, y
1
s ,

iz1s )− gi(s, y
2
s ,

iz2s )
)

ds−

∫ T

t

(iz1s −
iz2s ) dBs.

Then, (H3) and Tanaka’s formula lead to that, for each t ∈ [0, T ],

(8)

|iy1t −
iy2t | ≤

∫ T

t

sgn(iy1s −
iy2s)

(

gi(s, y
1
s ,

iz1s )− gi(s, y
2
s ,

iz2s)
)

ds

−

∫ T

t

sgn(iy1s −
iy2s)(

iz1s −
iz2s) dBs.

Furthermore, it follows from (H1) and (H2) that

(9) |gi(s, y
1
s ,

iz1s)− gi(s, y
2
s ,

iz2s)| ≤ u(s)ρ(|y1s − y2s |) + v(s)φ(|iz1s −
iz2s |).

Recalling that φ(·) is a non-decreasing function from R+ to itself with at most
linear-growth. From [6] we know that for each n ∈ N and x ∈ R+,

(10) φ(x) ≤ (n+ 2A)x+ φ

(

2A

n+ 2A

)

.

Thus, combining (8)–(10) we get that for each n ∈ N,

|iy1t −
iy2t | ≤ φ

(

2A

n+ 2A

)∫ T

0

v(s) ds
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+

∫ T

t

(

u(s)ρ(|y1s − y2s |) + (n+ 2A)v(s)|iz1s −
iz2s |
)

ds

−

∫ T

t

sgn(iy1s −
iy2s)(

iz1s −
iz2s ) dBs, t ∈ [0, T ].

Now for each t ∈ [0, T ], let

e
n,i
t := (n+ 2A)

sgn(iy1t −
iy2t )(

iz1t −
iz2t )

∗

|iz1t −
iz2t |

1
|
iz1

t−
iz2

t |6=0.

Then, (en,it )t∈[0,T ] is aR
d-valued, bounded and (Ft)-adapted process. It follows

from Girsanov’s theorem that B
n,i
t = Bt −

∫ t

0 e
n,i
s v(s) ds, t ∈ [0, T ], is a d-

dimensional Brownian motion under the probability Pn,i on (Ω,F) defined by

dPn,i

dP
= exp

{

∫ T

0

v(s)(en,is )∗ dBs −
1

2

∫ T

0

v2(s)|en,is |2 ds

}

.

Thus, for each n ∈ N and t ∈ [0, T ],

(11)

|iy1t −
iy2t | ≤ φ

(

2A

n+ 2A

)∫ T

0

v(s) ds+

∫ T

t

u(s)ρ(|y1s − y2s |) ds

−

∫ T

t

sgn(iy1s −
iy2s)(

iz1s −
iz2s ) dB

n,i
s .

Moreover, the process
( ∫ t

0 sgn(
iy1s−

iy2s)(
iz1s−

iz2s) dB
n,i
s

)

t∈[0,T ]
is an (Ft,P

n,i)-

martingale. In fact, let En,i[X ] represent the expectation of the random vari-
able X under Pn,i. By the BDG inequality and Hölder’s inequality we know
that there exists a positive constant K ′′ > 0 such that for each n ∈ N,

En,i

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

sgn(iy1s −
iy2s)(

iz1s −
iz2s) dB

n,i
s

∣

∣

∣

∣

]

≤ K ′′En,i





√

∫ T

0

|iz1s −
iz2s |

2 ds





≤ K ′′

√

√

√

√E

[

(

dPn,i

dP

)2
]

√

√

√

√E

[

∫ T

0

|iz1s −
iz2s |

2 ds

]

< +∞.

Thus, for each n ∈ N and 0 ≤ r ≤ t ≤ T , by taking the condition expectation
with respect to Fr under Pn,i in both sides of (11), we can get the desired
result (6). The proof of Lemma 11 is complete. �

In the sequel, we can prove the uniqueness part of Theorem 7. First, let
ρ(y) = ρ(|y|) for each y ∈ R, and for each n ∈ N, define ρn(·) : R 7→ R+ by

ρn(x) = sup
y∈R

{ρ(y)− n|x− y|}.
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It follows from Lemma 2 that ρn is well defined for n ≥ A, Lipschitz continuous,
non-increasing in n and converges to ρ. Then, for each n ≥ A, by Proposition
3 we can let fn

t be the unique solution of the following DBDE

(12) fn
t = an +

∫ T

t

[u(s)ρn(k · fn
s )] ds, t ∈ [0, T ].

Noticing that ρn and an are both decreasing in n, we have 0 ≤ fn+1
t ≤ fn

t

for each n ≥ A by Proposition 5, which implies that the sequence {fn
t }

+∞

n=1

converges point wisely to a function ft. Thus, by sending n → +∞ in (12), it
follows from Lemma 2 and the Lebesgue dominated convergence theorem that

ft =

∫ T

t

(

u(s)ρ(k · fs)
)

ds =

∫ T

t

(

u(s)ρ(k · fs)
)

ds, t ∈ [0, T ].

Recalling that ρ(·) ∈ S and
∫

0+ ρ−1(u) du = +∞, Proposition 6 yields that
ft ≡ 0.

Now, for each n ≥ A, j ≥ 1 and t ∈ [0, T ], let fn,j
t be the function defined

recursively as follows:

(13) f
n,1
t := C1; f

n,j+1
t := an +

∫ T

t

(

u(s)ρn(k · fn,j
s )

)

ds,

where C1 is defined in (5). Noticing that ρn is Lipschitz continuous, by Propo-

sition 4 we know that f
n,j
t converges point wisely to fn

t as j → +∞ for each
t ∈ [0, T ] and n ≥ A.

On the other hand, it is easy to check by induction that for each n ≥ A,
j ≥ 1 and i = 1, . . . , k,

(14) |iy1t −
iy2t | ≤ f

n,j
t ≤ f

n,j
0 , t ∈ [0, T ].

Indeed, (14) holds true for j = 1 due to (5). Suppose (14) holds true for j ≥ 1.
Then, for each t ∈ [0, T ],

u(t)ρ(|y1t − y2t |) ≤ u(t)ρ(k · fn,j
t ) ≤ u(t)ρn(k · fn,j

t ).

In view of (6) with r = t as well as (13), we can deduce that for each n ≥ A

and i = 1, 2, . . . , k,

|iy1t −
iy2t | ≤ f

n,j+1
t ≤ f

n,j+1
0 , t ∈ [0, T ],

which is the desired result.
Finally, by sending first j → +∞ and then n → +∞ in (14), we obtain that

supt∈[0,T ] |
iy1t −

iy2t | = 0 for each i = 1, 2, . . . , k. That is, the solution of BSDE

(1) is unique. The proof of the uniqueness part is then completed.

4.2. Proof of the existence part of Theorem 7

The idea of the proof of this part is enlightened by [8]. But some different
arguments are used, and then the proof procedure is simplified at certain degree.

Assume that the generator g satisfies (H1)–(H4) and ξ ∈ L2(Ω,FT ,P;Rk).
Without loss of generality, we assume that u(t) and v(t) in (H1) and (H2) are
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both strictly positive functions. Otherwise, we can use u(t)+e−t and v(t)+e−t

instead of them respectively.
We have the following Lemma 12.

Lemma 12. Let g satisfy (H1)–(H3), and assume that u(t) > 0 and v(t) > 0
for each t ∈ [0, T ]. Then there exists a generator sequence {gn}+∞

n=1 such that

(i) For each n ∈ N, gn(t, y, z) is a mapping from Ω× [0, T ]×Rk ×Rk×d

into Rk and is (Ft)-progressively measurable. Moreover, we have dP×
dt− a.e., for each y ∈ Rk and z ∈ Rk×d,

|gn(t, y, z)| ≤ |g(t, 0, 0)|+ kAu(t)(1 + |y|) + kAv(t)(1 + |z|);

(ii) For each n ∈ N, gn(t, y, z) satisfies (H3), and dP× dt− a.e., for each

y1, y2 ∈ Rk and z1, z2 ∈ Rk×d, we have

|gn(t, y1, z1)− gn(t, y2, z2)| ≤ ku(t)ρ(|y1 − y2|) + kv(t)φ(|z1 − z2|),

|gn(t, y1, z1)− gn(t, y2, z2)| ≤ k(n+A)
(

u(t)|y1 − y2|+ v(t)|z1 − z2|
)

;

(iii) For each n ∈ N, there exists a non-increasing deterministic functions

sequence bn(·) : [0, T ] 7→ R+ with
∫ T

0
bn(t) dt → 0 as n → +∞ such

that dP× dt− a.e., for each y ∈ Rk and z ∈ Rk×d,

|gn(t, y, z)− g(t, y, z)| ≤ kbn(t).

Proof. For each i = 1, . . . , k, by (H1)–(H3) we deduce that dP× dt− a.e., for
each n ∈ N, y, p ∈ Rk and z, q ∈ Rk×d,

(15)

gi(t, p,
iq) + (n+A)

(

u(t)|p− y|+ v(t)|iq − iz|
)

≥ gi(t, 0, 0)−
(

Au(t)(1 + |p|) +Av(t)(1 + |iq|)
)

+Au(t)(|p| − |y|) +Av(t)(|iq| − |iz|)

≥ gi(t, 0, 0)−Au(t)(1 + |y|)−Av(t)(1 + |iz|).

Thus, for each n ∈ N, i = 1, . . . , k, y ∈ Rk and z ∈ Rk×d, we can define the
following (Ft)-progressively measurable function:
(16)
gni (t, y, z) = inf

(p,q)∈Rk
×Rk×d

{

gi(t, p,
iq) + (n+A)

(

u(t)|p− y|+ v(t)|iq − iz|
)}

,

and it depends only on the ith row of z. Obviously, gni (t, y,
iz) ≤ gi(t, y,

iz),
and it follows from (15) that

gni (t, y,
iz) ≥ −|gi(t, 0, 0)| −Au(t)(1 + |y|)−Av(t)(1 + |iz|).

Hence, for each n ∈ N, gni is well defined and (i) holds true with setting
gn := (gn1 , g

n
2 , . . . , g

n
k ).

Furthermore, it follows from (16) that

gni (t, y,
iz) = inf

(p,q)∈Rk
×Rk×d

{

gi(t, y − p, iz − iq) + (n+A)
(

u(t)|p|+ v(t)|iq|
)}

.
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Thus, in view of (H1)–(H2) and the following basic inequality

(17)

∣

∣

∣

∣

inf
x∈D

f1(x)− inf
x∈D

f2(x)

∣

∣

∣

∣

≤ sup
x∈D

|f1(x) − f2(x)|,

we have, dP × dt − a.e., for each n ∈ N, i = 1, . . . , k, y1, y2 ∈ Rk and z1,
z2 ∈ Rk×d,

|gni (t, y1,
iz1)− gni (t, y2,

iz2)|

≤ sup
(p,q)∈Rk

×Rk×d

|gi(t, y1 − p, iz1 −
iq)− gi(t, y2 − p, iz2 −

iq)|

≤ u(t)ρ(|y1 − y2|) + v(t)φ(|iz1 −
iz2|),

which means that (H1)–(H2) hold true for gni .
In the sequel, it follows from (16) and (17) that, dP × dt − a.e., for each

n ∈ N, i = 1, . . . , k, y1, y2 ∈ Rk and z1, z2 ∈ Rk×d,

|gni (t, y1,
iz1)− gni (t, y2,

iz2)|

≤ sup
(p,q)∈Rk

×Rk×d

|(n+A)(u(t)|p − y1|+ v(t)|iq − iz1|)

− (n+A)(u(t)|p− y2|+ v(t)|iq − iz2|)|

≤ (n+A)
(

u(t)|y1 − y2|+ v(t)|iz1 −
iz2|
)

.

Hence, (A1) is right for gni .
Finally, for each n ∈ N, i = 1, . . . , k, y ∈ Rk, z ∈ Rk×d and t ∈ [0, T ], let

Hn,i,t(y, z) :=
{

(p, q) ∈ Rk ×Rk×d : u(t)|p−y|+v(t)|iq−iz|> 2A
n

(

u(t)+v(t)
)}

,

then

Hc
n,i,t(y, z)=

{

(p, q) ∈ Rk ×Rk×d : u(t)|p−y|+v(t)|iq−iz| ≤ 2A
n

(

u(t)+v(t)
)}

.

For each n ∈ N, i = 1, . . . , k, y ∈ Rk, z ∈ Rk×d, t ∈ [0, T ] and (p, q) ∈
Hn,i,t(y, z), it follows from (H1)–(H2) that

gi(t, p,
iq)+(n+A)

(

u(t)|p− y|+v(t)|iq − iz|
)

≥ gi(t, y,
iz)+n

(

u(t)|p− y|+v(t)|iq − iz|
)

−A
(

u(t)+v(t)
)

> gi(t, y,
iz) +A

(

u(t) + v(t)
)

, dP− a.s..

Then, since gni (t, y,
iz) ≤ gi(t, y,

iz), we have that dP × dt − a.e., for each
n ∈ N, i = 1, . . . , k, y ∈ Rk and z ∈ Rk×d,
(18)
gni (t, y,

iz) = inf
(p,q)∈Hc

n,i,t(y,z)

{

gi(t, p,
iq) + (n+A)

(

u(t)|p− y|+ v(t)|iq − iz|
)}

.

In the sequel, (H1)–(H3) and (18) yield that, dP × dt− a.e., for each n ∈ N,
i = 1, . . . , k, y ∈ Rk and z ∈ Rk×d,

gni (t, y,
iz) ≥ inf

(p,q)∈Hc
n,i,t(y,z)

{gi(t, y,
iz)− u(t)ρ(|p− y|)− v(t)φ(|iq − iz|)}
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≥ gi(t, y,
iz)− bn(t),

where

bn(t) = u(t)ρ

(

2A

n
·
u(t) + v(t)

u(t)

)

+ v(t)φ

(

2A

n
·
u(t) + v(t)

v(t)

)

.

Thus, dP× dt− a.e., for each n ∈ N, i = 1, . . . , k, y ∈ Rk and z ∈ Rk×d,

0 ≤ gi(t, y,
iz)− gni (t, y,

iz) ≤ bn(t).

It is clear that bn(t) ↓ 0 as n → +∞ for each t ∈ [0, T ]. Since ρ(·) and φ(·) are
at most linear-growth, we have

bn(t) ≤ Au(t) +
2A2

n

(

u(t) + v(t)
)

+Av(t) +
2A2

n

(

u(t) + v(t)
)

≤ (A+ 4A2)
(

u(t) + v(t)
)

,

from which and the Lebesgue dominated convergence theorem it follows that
∫ T

0 bn(t) dt → 0 as n → +∞.
Thus, the sequence gn := (gn1 , g

n
2 , . . . , g

n
k ) is just the one we desire. The

proof is complete. �

Now, we can give the proof of the existence part of Theorem 7. First, it
follows from (i)–(ii) of Lemma 12 and (H4) that for each n ∈ N, gn satisfies
(A1) and (H4). Then it follows from Lemma 10 that for each n ∈ N and
ξ ∈ L2(Ω,FT ,P;Rk), the following BSDE

(19) ynt = ξ +

∫ T

t

gn(s, yns , z
n
s ) ds−

∫ T

t

zns dBs, t ∈ [0, T ],

has a unique solution (ynt , z
n
t )t∈[0,T ]. The following proof will be split into three

steps.

Step 1. In this step we show that {(ynt )t∈[0,T ]}
+∞

n=1 is a Cauchy sequence in

S2(0, T ;Rk).

For each n, m ∈ N, let (ynt , z
n
t )t∈[0,T ] and (ymt , zmt )t∈[0,T ] be, respectively,

solutions of BSDE (ξ, T, gn) and BSDE (ξ, T, gm). Using Itô’s formula to |ynt −
ymt |2 we arrive, for each t ∈ [0, T ], at

(20)

|ynt − ymt |2 +

∫ T

t

|zns − zms |2 ds

= 2

∫ T

t

〈yns − yms , gn(s, yns , z
n
s )− gm(s, yms , zms )〉ds

− 2

∫ T

t

〈yns − yms , (zns − zms ) dBs〉.

It follows from (ii)–(iii) in Lemma 12 and the basic inequality 2ab ≤ 2a2+ b2/2
that, with adding and subtracting the term gn(s, yms , zms ),

2〈yns − yms , gn(s, yns , z
n
s )− gm(s, yms , zms )〉
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≤ 2|yns − yms |
(

kAu(s)|yns − yms |+ kAv(s)|zns − zms |

+ kAu(s) + kAv(s) + τn,m(s)
)

≤
(

D(s) + τn,m(s)
)

|yns − yms |2 +
1

2
|zns − zms |2 + kAu(s) + kAv(s) + τn,m(s),

where

τn,m(s) = k
(

bn(s)+bm(s)
)

, D(s) = 2kAu(s)+2k2A2v2(s)+kAu(s)+kAv(s).

Putting the previous inequality into (20) and taking the conditional expectation
with respect to Fr yield that, for each 0 ≤ r ≤ t ≤ T and n, m ∈ N,

E
[

|ynt − ymt |2
∣

∣Fr

]

≤

∫ T

t

(

D(s) + τn,m(s)
)

E
[

|yns − yms |2
∣

∣Fr

]

ds+ Cn,m,

where Cn,m =
∫ T

0

(

kAu(s) + kAv(s) + τn,m(s)
)

ds. It follows from Lemma 4 in
[7] that

E
[

|ynt − ymt |2
∣

∣Fr

]

≤ Cn,me
∫

T
0

(D(s)+τn,m(s)) ds

≤ C1,1e
∫ T
0
(D(s)+τ1,1(s)) ds := (C2)

2.

After taking r = t in the previous inequality, we have that for each n, m ∈ N,
dP× dt− a.e., |ynt − ymt |≤C2.

Furthermore, it follows from (ii) in Lemma 12, (H3) and Tanaka’s formula
that for each t ∈ [0, T ],

|iynt − iymt | ≤

∫ T

t

sgn(iyns − iyms )
(

gni (s, y
n
s ,

izns )− gmi (s, yms , izms )
)

ds

−

∫ T

t

sgn(iyns − iyms )(izns − izms ) dBs.(21)

It follows from (ii)–(iii) in Lemma 12 that, by adding and subtracting the term
gni (s, y

m
s , izms ),

(22)
|gni (s, y

n
s ,

izns )− gmi (s, yms , izms )|

≤ ku(s)ρ(|yns − yms |) + kv(s)φ(|izns − izms |) + τn,m(s).

Combining (21)–(22) with (10) we get that for each n, m, q ∈ N and t ∈ [0, T ],

|iynt − iymt | ≤ Cn,m,q + k

∫ T

t

(

u(s)ρ(|yns − yms |) + (q + 2A)v(s)|izns − izms |
)

ds

−

∫ T

t

sgn(iyns − iyms )(izns − izms ) dBs,(23)

where

Cn,m,q := kφ

(

2A

q + 2A

)∫ T

0

v(s) ds+

∫ T

0

τn,m(s) ds.
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In the sequel, by virtue of Girsanov’s theorem, in the same way as in the proof
of Lemma 11 we can deduce from (23) that for each n, m, q ∈ N, i = 1, . . . , k,
and 0 ≤ r ≤ t ≤ T ,

En,m,q,i
[

|iynt − iymt |
∣

∣Fr

]

≤ Cn,m,q + k

∫ T

t

En,m,q,i
[

u(s)ρ(|yns − yms |)
∣

∣Fr

]

ds,

where En,m,q,i[X |Ft] represents the conditional expectation of random variable
X with respect to Ft under a probability measure Pn,m,q,i on (Ω,F), which
depends on n, m, q and i, and which is absolutely continuous with respect to
P.

Finally, note that Cn,m,q tends non-increasingly to 0 as n, m, q → +∞. The
same argument as in the proof of the uniqueness part of Theorem 7 yields that
for each i = 1, . . . , k,

lim
n,m→+∞

E

[

sup
t∈[0,T ]

|iynt − iymt |2

]

= 0,

which means that {(ynt )t∈[0,T ]}
+∞

n=1 is a Cauchy sequence in S2(0, T ;Rk). We
denote the limit by (yt)t∈[0,T ].

Step 2. In this step we show that {(znt )t∈[0,T ]}
+∞

n=1 is a Cauchy sequence in

M2(0, T ;Rk×d).

Using Itô’s formula for |ynt |
2 defined in BSDE (19), we can obtain that

|ynt |
2 +

∫ T

t

|zns |
2 ds = |ξ|2 + 2

∫ T

t

〈yns , g
n(s, yns , z

n
s )〉ds− 2

∫ T

t

〈yns , z
n
s dBs〉.

Let Gn(ω) := supt∈[0,T ] |y
n
t |. It follows from the convergence of {(ynt )t∈[0,T ]}

+∞

n=1

in S2(0, T ;Rk) that supn∈N
E
[

G2
n(ω)

]

< +∞. In view of (i) in Lemma 12 we
have that for each t ∈ [0, T ],

|ynt |
2 +

∫ T

t

|zns |
2 ds

≤ |ξ|2 − 2

∫ T

t

〈yns , z
n
s dBs〉

+ 2Gn(ω)

∫ T

t

(

|g(s, 0, 0)|+ kAu(s)(1 + |yns |) + kAv(s)(1 + |zns |)
)

ds.

It follows from the BDG inequality that (
∫ t

0
〈ynt , z

n
t dBs〉)t∈[0,T ] is an (Ft,P)-

martingale. By the inequalities 2ab ≤ a2 + b2, 2ab ≤ λa2 + b2/λ (λ :=

2k2A2
∫ T

0 v2(s) ds) and Hölder’s inequality we deduce that for each n ∈ N,

E

[

∫ T

0

|zns |
2 ds

]
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≤ E
[

|ξ|2
]

+

[

1 + kA+ λ+ 2kA

∫ T

0

u(s) ds

]

sup
n∈N

E
[

G2
n(ω)

]

+E





(

∫ T

0

|g(s, 0, 0)| ds

)2


+ kA

(

∫ T

0

(

u(s) + v(s)
)

ds

)2

+
k2A2

λ
E





(

∫ T

0

v(s)|zns | ds

)2




≤ C3 +
1

2
E

[

∫ T

0

|zns |
2 ds

]

,

from which it follows that

(24) sup
n

E

[

∫ T

0

|zns |
2 ds

]

≤ 2C3 < +∞,

where C3 is a positive constant and independent of n.
On the other hand, by taking expectation in both sides of (20), we have that

for each n, m ∈ N,
(25)

E

[

∫ T

0

|zns − zms |2 ds

]

≤ 2E

[

∫ T

0

〈yns − yms , gn(s, yns , z
n
s )− gm(s, yms , zms )〉ds

]

.

It follows from (i) in Lemma 12 that

2〈yns − yms , gn(s, yns , z
n
s )− gm(s, yms , zms )〉

≤ 4k|yns − yms |
[

|g(s, 0, 0)|+Au(s)
(

Gn(ω) +Gm(ω)
)

+Av(s)(|zns |+ |zms |) +A(u(s) + v(s))
]

.

Putting the previous inequality into (25) and using Hölder’s inequality and (24)
yields that

E

[

∫ T

0

|zns − zms |2 ds

]

≤ 16k

√

√

√

√E

[

sup
t∈[0,T ]

|ynt − ymt |2

]

√

√

√

√

√E





(

∫ T

0

[

|g(s, 0, 0)|+A
(

u(s) + v(s)
)]

ds

)2




+ 32kA

∫ T

0

u(s) ds
√

sup
n∈N

E [G2
n(ω)]

√

√

√

√E

[

sup
t∈[0,T ]

|ynt − ymt |2

]

+ 32kA

√

2C3

∫ T

0

v2(s) ds

√

√

√

√E

[

sup
t∈[0,T ]

|ynt − ymt |2

]

.
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Since supn∈N E[G2
n(ω)] < +∞, {(ynt )t∈[0,T ]}

+∞

n=1 converges in S2(0, T ;Rk) and

E





(

∫ T

0

[

|g(s, 0, 0)|+A
(

u(s) + v(s)
)]

ds

)2




≤ 2E





(

∫ T

0

|g(s, 0, 0)| ds

)2


+ 2

(

∫ T

0

A
(

u(s) + v(s)
)

ds

)2

< +∞,

we can deduce that,

lim
n,m→+∞

E

[

∫ T

0

|zns − zms |2 ds

]

= 0.

Therefore, {(znt )t∈[0,T ]}
+∞

n=1 is a Cauchy sequence in M2(0, T ;Rk×d). We denote
by (zt)t∈[0,T ] the limit.

Step 3. This step will show that the process (yt, zt)t∈[0,T ] is a solution of
BSDE (1).

Now, we have known that for each fixed t ∈ [0, T ], the sequence {ynt }
+∞

n=1

and {
∫ T

t
zns dBs}

+∞

n=1 converge in L2(Ω,FT ,P;Rk) toward to yt and
∫ T

t
zs dBs

respectively. Next let us check the limit of gn(s, yns , z
n
s ) in BSDE (19). First,

for each t ∈ [0, T ], we have

(26)

E





(

∫ T

t

|gn(s, yns , z
n
s )− g(s, ys, zs)| ds

)2




≤ 2E





(

∫ T

0

|gn(s, yns , z
n
s )− g(s, yns , z

n
s )| ds

)2




+ 2E





(

∫ T

0

|g(s, yns , z
n
s )− g(s, ys, zs)| ds

)2


 .

It follows from (iii) in Lemma 12 that the first term on the right side of (26)
converges to 0 as n → +∞. Furthermore, by (H1)–(H2) and (10) we have that
for each n, m ∈ N,

E





(

∫ T

0

|g(s, yns , z
n
s )− g(s, ys, zs)| ds

)2




≤ 2(m+ 2A)2E





(

∫ T

0

(

u(s)|yns − ys|+ v(s)|zns − zs|
)

ds

)2


(27)
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+ 2

(

∫ T

0

[

u(s)ρ

(

2A

m+ 2A

)

+ v(s)φ

(

2A

m+ 2A

)]

ds

)2

.

Note that the second term on the right side of (27) converges to 0 as m → +∞.
On the other hand, it follows from Hölder’s inequality that

E





(

∫ T

0

(

u(s)|yns − ys|+ v(s)|zns − zs|
)

ds

)2




≤ 2

(

∫ T

0

u(s) ds

)2

E

[

sup
t∈[0,T ]

|ynt − yt|
2

]

+ 2

∫ T

0

v2(s) dsE

[

∫ T

0

|zns − zs|
2 ds

]

.

Thus, by virtue of the fact that {(ynt , z
n
t )t∈[0,T ]}

+∞

n=1 is a Cauchy sequence in

S2(0, T ;Rk) × M2(0, T ;Rk×d), taking n → +∞ and then m → +∞ in (27)
and taking n → +∞ in (26) yield that for each t ∈ [0, T ],

lim
n→+∞

E





∣

∣

∣

∣

∣

∫ T

t

gn(s, yns , z
n
s ) ds−

∫ T

t

g(s, ys, zs) ds

∣

∣

∣

∣

∣

2


 = 0.

Subsequently, noticing that (yt)t∈[0,T ] is a continuous process, by passing to
the limit in BSDE (19) we deduce that dP− a.s.,

yt = ξ +

∫ T

t

g(s, ys, zs) ds−

∫ T

t

zs dBs, t ∈ [0, T ],

which means that (yt, zt)t∈[0,T ] ∈ S2(0, T ;Rk) ×M2(0, T ;Rk×d) is a solution
of BSDE (1).

Remark 13. Note that if there exists a constant K > 0 such that the function
φ(·) appearing in (H2) satisfies φ(x) ≤ Kx for all x ∈ R+, then the condition
∫ T

0

(

v(t)+v2(t)
)

dt < +∞ in Theorem 7 can be weakened to
∫ T

0
v2(t) dt < +∞

as in Lemma 10.
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