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THE DISTINGUISHING NUMBERS

OF MERGED JOHNSON GRAPHS

Dongseok Kim, Young Soo Kwon, and Jaeun Lee

Abstract. In present article, we determine the distinguishing number of
the merged Johnson graphs which are generalization of both the Kneser
graphs and the Johnson graphs.

1. Introduction

The distinguishing number of a graph G is the minimum number of colors
for which there exists an assignment of colors to the vertices of G such that
the identity is the only color-preserving automorphism of G. Generally, for
a permutation group Γ acting on X , the distinguishing number of Γ is the
minimum number of cells of a partition π of X satisfying that the identity is
the only element of Γ fixing each cell of π. Albertson and Collins first introduced
the distinguishing number of a graph [3] and there have been many interesting
results on the distinguishing numbers of graphs and permutation groups in last
few years [1, 2, 3, 4, 5, 7, 8, 10, 11].

Here we consider a class of graphs based on the Johnson graphs. For positive
integers k, n such that 1 ≤ k ≤ n

2 , the Johnson graph J(n, k) has vertices given
by the k-subsets of [n] = {1, 2, . . . , n} and there exists an edge between two
vertices if and only if their intersection has size k − 1. Given a nonempty
subset I ⊆ {1, 2, . . . , k}, the merged Johnson graph J(n, k)I is the union of
the distance i graphs J(n, k)i of J(n, k) for all i ∈ I, namely, two k-subsets
are adjacent in J(n, k)I if and only if their intersection has k − i elements for
some i ∈ I. The merged Johnson graphs J(n, k)I include many interesting
graphs such as the Johnson graph J(n, k) = J(n, k){1} and the Kneser graph
K(n, k) = J(n, k){k}.

In [2], M. O. Albertson and D. L. Boutin determined the distinguishing
number of the Kneser graphs. The aim of the present article is to determine
the distinguishing number of the merged Johnson graphs.
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The outline of this paper is as follows. In Section 2, we review some prelim-
inaries regarding the distinguishing numbers and the merged Johnson graphs.
In Section 3, we find Theorem 3.2 which addresses the distinguishing numbers
of the merged Johnson graphs. We also prove lemmas which are used for a
proof of the main theorem. At last, we provide a proof of Theorem 3.2 in
Section 4.

2. Preliminaries

For a given graph G, a coloring f : V (G) → {1, 2, . . . , r} is said to be
r-distinguishing if the identity is the only graph automorphism φ satisfying
f(φ(v)) = f(v) for all v ∈ V (G). This means that the distinguishing coloring
is a symmetry-breaking coloring of G. The distinguishing number, denoted by
Dist(G), is the minimum r that G has an r-distinguishing coloring. One can
easily see that Dist(G) = Dist(Gc) where Gc is the complement of G. If G is
an asymmetric graph, namely if the identity is the only automorphism of G,
then Dist(G) = 1. In fact, the converse is also true.

For a graph G and for a subset S ⊆ V (G), a coloring f : S → {1, 2, . . . , s} is
said to be s-distinguishing if for any graph automorphism φ of G fixing S set-
wisely and satisfying f(φ(v)) = f(v) for all v ∈ S fixes all elements of S. In this
case, φ does not need to fix other vertices outside of the given set S. If there
exists an s-distinguishing coloring for S, the set S is called an s-distinguishable
set.

For a graph G, a subset S ⊆ V (G) is called a determining set if the identity
is the only automorphism fixing every element of S. Note that if S ⊆ V (G) is a
determining set, then any subset T ⊆ V (G) containing S is also a determining
set. The determining sets provide a useful tool for finding the distinguishing
number of G as stated in the following theorem.

Proposition 2.1 ([2]). For a given graph G, G has an r-distinguishable de-

termining set if and only if G has an (r + 1)-distinguishing coloring.

Consequently, we find the following corollary which will be used in the proof
of our results.

Corollary 2.2. For a given graph G, if there is an asymmetric subgraph of G

induced by a determining set S, then Dist(G) = 1 or 2.

Proof. For a graph automorphism φ of G fixing S set-wisely, the restriction of
φ on the induced subgraph 〈S〉 is a graph automorphism of 〈S〉. Since 〈S〉 is
asymmetric, the coloring f(v) = 1 for all v ∈ S is a 1-distinguishing. Since S
is a determining set, G has a 2-distinguishing coloring by Proposition 2.1. �

Using Proposition 2.1, M. O. Albertson and D. L. Boutin determined the
distinguishing number of the Kneser graphs as follows.

Proposition 2.3 ([2]). For any integers n > k ≥ 2 with n > 2k, Dist(K(n, k))
= 2 except (n, k) = (5, 2); and Dist(K(5, 2)) = 3.
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Note that the Kneser graphK(5, 2) is isomorphic to the Pertersen graph and
its distinguishing number is 3. K(n, 1) is isomorphic to the complete graph and
so Dist(K(n, 1)) = n for any integer n.

For a graph G, the distinguishing number Dist(G) is equal to the distin-
guishing number of Aut(G) which acts on the vertex set V (G). Hence we have
the following lemma. The proof is straightforward and we omit it.

Lemma 2.4. Let G1 and G2 be two graphs having the same vertex set V .

(1) If Aut(G1) is a subgroup of Aut(G2) as acting groups on V , then

Dist(G1) ≤ Dist(G2).
(2) If Aut(G1)=Aut(G2) as acting groups on V , then Dist(G1)=Dist(G2).

3. The distinguishing numbers of the merged Johnson graphs

Let Ω be the set of all k-subsets of [n]. The action of Sn on [n] naturally
induces an action of Sn on Ω. The Johnson graph J(n, k) is an orbital graph
which corresponds to the orbital {(M,N) ∈ Ω2 | |M∩N | = k−1}. The distance
i graph J(n, k)i of J(n, k) is an orbital graph corresponding to the orbital

Γi = {(M,N) ∈ Ω2 | |M ∩N | = k − i}

(see [6] for orbital graphs).
For a merged Johnson graph J = J(n, k)I , the complementation of each

k-sets M →M c induces an isomorphism from J(n, k)I to J(n, n− k)I . So we
may assume that k ≤ n/2. For a merged Johnson graph J = J(n, k)I with
1 ≤ k ≤ n

2 , if I = ∅ or {1, 2, . . . , k}, then J is the null or complete graph and

so Aut(J) = Sd, where d =
(

n
k

)

. Thus, we further assume that k ≥ 2 and
∅  I  {1, 2, . . . , k}. For notational simplicity, let I ′ = I \ {k}, and for any
integer t, let t− I = {t− i | i ∈ I} and t− I ′ = {t− i | i ∈ I ′}. We also denote
I ′′ = k − I ′, and let e = 1

2

(

n
n/2

)

.

In [9], G. Jones found the automorphism groups of the merged Johnson
graphs as follows.

Theorem 3.1 ([9]). Let J = J(n, k)I , where 2 ≤ k ≤ n
2 and ∅  I  

{1, 2, . . . , k} and let A = Aut(J).

(1) If 2 ≤ k < n−1
2 , and J 6= J(12, 4)I with I = {1, 3} or {2, 4}, then

A = Sn with orbitals Γ0,Γ1, . . . ,Γk ⊂ Ω2.

(2) If J = J(12, 4)I with I = {1, 3} or {2, 4}, then A = O−1
10 (2) with

orbitals Γ0,Γ1 ∪ Γ3,Γ2 ∪ Γ4.

(3) If k = n−1
2 and I 6= k+1−I, then A = Sn with orbitals Γ0,Γ1, . . . ,Γk ⊂

Ω2.

(4) If k = n−1
2 and I = k + 1 − I, then A = Sn+1 with orbitals Γ0 and

Γi ∪ Γk+1−i for all i = 1, 2, . . . , ⌊k+1
2 ⌋.

(5) If k = n
2 and I 6= {k} nor {1, 2, . . . , k − 1}, and I ′ 6= I ′′, then A =

S2 × Sn with orbitals Γ0,Γ1, . . . ,Γk ⊂ Ω2.
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(6) If k = n
2 and I 6= {k} nor {1, 2, . . . , k− 1}, and I ′ = I ′′, then A = Se

2 :

Sn with orbitals Γ0 and Γi ∪ Γk−i for all i = 1, 2, . . . , ⌊k
2 ⌋ and Γk.

(7) If k = n
2 and I = {k} or {1, 2, . . . , k − 1}, then A = Se

2 : Se = S2 ≀ Se

with orbitals Γ0,Γ1 ∪ · · · ∪ Γk−1 and Γk.

To understand the automorphism group Sn+1 of J(n, n−1
2 )I with I = k +

1− I, let ˜[n] = [n]∪{∞} and let Ψ be the set of equipartitions of ˜[n], by which

we mean the unordered partitions {P1, P2} of ˜[n] satisfying |P1| = |P2| =
n+1
2 .

There is a bijection φ : Ω → Ψ, sending each M to {M ∪ {∞}, [n]−M}. Note
that its inverse sends an equipartition {P1, P2} to Pi \ {∞}, where i is chosen

so that ∞ ∈ Pi. The natural action of Sn+1 on ˜[n] induces an action of Sn+1

on Ω. By the condition I = k + 1 − I, one can see that this action induces
an automorphism group of J(n, n−1

2 )I (For a detail information, see the paper
[9]). The next theorem is the main theorem of this paper.

Theorem 3.2. Let J = J(n, k)I , where 2 ≤ k ≤ n
2 and ∅  I  {1, 2, . . . , k}.

(1) If (n, k) 6= (5, 2) and J 6= J(n, n2 )I with I = {n
2 }, {1, 2, . . . ,

n
2 − 1} or

I ′ = I ′′, then Dist(J) = 2.
(2) If J = J(5, 2)I with I = {1} or {2}; or J = J(n, n2 )I satisfying I ′ = I ′′

and I is neither {n
2 } nor {1, 2, . . . , n2 − 1}, then Dist(J) = 3.

(3) If J = J(n, n2 )I with I = {n
2 } or {1, 2, . . . , n2 − 1}, then Dist(J) =

⌈
1+

√
1+4( n

n/2)
2 ⌉.

Corollary 3.3. Let G = J(n, k) be the Johnson graph with k ≥ 2.

(1) If (n, k) 6= (4, 2) nor (5, 2), then Dist(G) = 2 and

(2) if G = J(4, 2) or J(5, 2), then Dist(J) = 3.

We will prove Theorem 3.2 in the next section. For the rest of the section,
we will prove lemmas which will be used in the proof of Theorem 3.2. For a set
[n] = {1, 2, 3, . . ., n} and for any permutation π of [n], π can be represented
by (i1, i2, . . ., in), where for any j = 1, . . ., n, π(j) = ij . Throughout the rest
of the paper, we use the above representation of permutations. Now for any
permutations π = (i1, i2, . . . , in), σ = (j1, j2, . . . , jn) and for any integer t ∈ [n],
πσ(t) = π(σ(t)) = π(jt) = ijt , and hence πσ = (ij1 , ij2 , . . . , ijn). For any
j ∈ [n], let τj be the transposition of [n] exchanging j and j +1. Note that for
any permutation π = (i1, i2, . . . , in), πτj = (i1, . . . , ij−1, ij+1, ij , ij+2, . . . , in).

For any permutation π = (i1, i2, . . . , in) and for any k, ℓ ∈ [n] with 1 ≤
k ≤ n

2 , let V
π
k,ℓ be the k-subset {iℓ, iℓ+1, . . ., iℓ+k−1}, where the subscripts are

considered as their residue classes modulo n. For our convenience, as a vertex
of J(n, k)I , we denote V

π
k,ℓ by V

π
ℓ and if π is the identity, we denote V π

ℓ simply
by Vℓ.

For any permutation π = (i1, i2, . . . , in), let φπ be the permutation of the
vertex set of J(n, k)I defined by

φπ({a1, a2, . . . , ak}) = {π(a1), π(a2), . . . , π(ak)} = {ia1 , ia2 , . . . , iak
}
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for any vertex {a1, a2, . . . , ak} of J(n, k)I . Now one can check that φπ be an
automorphism of J(n, k)I .

Lemma 3.4. For any permutation π = (i1, i2, . . . , in) of [n] and for any ℓ ∈ [n],
φπ(Vℓ) = V π

ℓ . Furthermore for any permutation σ of [n], φπ(V
σ
ℓ ) = V πσ

ℓ .

Proof. Since Vℓ = {ℓ, ℓ+ 1, . . . , ℓ+ k − 1}, we have

φπ(Vℓ) = {π(ℓ), π(ℓ+ 1), . . . , π(ℓ+ k − 1)} = {iℓ, iℓ+1, . . . , iℓ+k−1} = V π
ℓ .

Furthermore for any permutation σ of [n],

φπ(V
σ
ℓ ) = φπ({σ(ℓ), σ(ℓ + 1), . . . , σ(ℓ + k − 1)})

= {πσ(ℓ), πσ(ℓ + 1), . . . , πσ(ℓ + k − 1)} = V πσ
ℓ . �

Lemma 3.5. Let J = J(12, 4)I with I = {1, 3}. For any permutation π of

X, if an automorphism φ of J fixes all vertices in S = {V π
j , V

πτ1
j , V πτ2

j | j =

1, 2, . . . , 12}, then φ also fixes V πτi
j for all i, j = 1, 2, . . . , 12.

Proof. By Lemma 3.4, we may assume that π is the identity. Note that S =
{Vj | j = 1, 2, . . . , 12} ∪ {V τ1

2 , V τ1
10 } ∪ {V τ2

3 , V τ2
11 }, where V

τ1
2 = {1, 3, 4, 5}, V τ1

10

= {10, 11, 12, 2} and V τ2
3 = {2, 4, 5, 6}, V τ2

11 = {11, 12, 1, 3}.
Let φ be an automorphism of J fixing all vertices in S. Since τ3 = (1, 2, 4, 3,

5, 6, . . . , 12), we have {V τ3
j | j = 1, 2, . . . , 12} \ S = {V τ3

4 , V τ3
12 }, where V

τ3
4 =

{3, 5, 6, 7} and V τ3
12 = {12, 1, 2, 4}. Let A = N(V τ3

4 ) ∩ S and B = N(V τ3
12 ) ∩ S.

Now we have

A = {V1, V3, V4, V5, V7, V12, V
τ2
11 } and B = {V1, V3, V4, V9, V11, V12}.

Let X be a vertex in J such that N(X) ∩ S = A. For the first case, assume
that |X ∩ V1| = 3. If X ∩ V1 = {1, 2, 3}, then 4, 5, 6 /∈ X and 7 ∈ X because X
is adjacent to both V3 and V4 but not to V2. In this case, X is adjacent to V6,
a contradiction. If X ∩ V1 = {1, 2, 4}, then 5, 6, 7 /∈ X and 8 ∈ X , and hence
X is adjacent to V6, a contradiction. Similarly, one can show that X ∩ V1 is
neither {1, 3, 4} nor {2, 3, 4}. Therefore we have |X ∩ V1| = 1.

Assume that X ∩ V1 = {1}. Then 2, 3, 4, 5 /∈ X and 6 ∈ X because
V2 /∈ N(X) and V3 ∈ N(X). Since X is adjacent to V4, V5, V7, V12 but not
to V2, V6, V8, the only possible X is {1, 6, 9, 11}. But {1, 6, 9, 11} is adjacent
to V τ1

2 = {1, 3, 4, 5} which is an element in S \ A, a contradiction. Similarly,
one can show that if X ∩ V1 = {2} or X ∩ V1 = {4}, then a contradiction
occurs. Furthermore when X ∩ V1 = {3}, the only possible X is {3, 5, 6, 7},
which satisfies N(X)∩S = A. Hence X = {3, 5, 6, 7} = V τ3

4 . This implies that
φ also fixes V τ3

4 .
Let Y be a vertex in J such that N(Y )∩S = B. By considering the fact that

Y is adjacent to V1, V3, V4, V9, V11, V12 but not to V2, V5, V6, V7, V8, V10, one can
show that Y = {1, 6, 8, 10}, {2, 5, 8, 9} or {12, 1, 2, 4}. Since Y is not adjacent
to V τ1

2 = {1, 3, 4, 5}, Y is V τ3
12 = {12, 1, 2, 4}. This implies that φ fixes V τ3

12 . Up
to now, we showed that φ fixes V τ3

j for all j = 1, 2, . . . , 12.
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Since φ fixes all elements in {Vj , V
τ2
j , V τ3

j | j = 1, 2, . . . , 12}, one can show

that φ fixes V τ4
j for all j = 1, 2, . . . , 12 by a similar way. Continuing the similar

process, one can show that φ fixes V τi
j for all i, j = 1, 2, . . . , 12. �

Lemma 3.6. Let J = J(12, 4)I with I = {1, 3}. For any permutation π of

[n], if an automorphism φ of J fixes all vertices in S1 = {V π
j , V

πτi
j | i, j =

1, 2, . . . , 12}, then φ also fixes V πτiτk
j for all i, j, k = 1, 2, . . . , 12.

Proof. By Lemma 3.4, assume that π is the identity. Let φ be an automorphism
of J fixing all vertices in S1. Note that {V τ1τ2

j | j = 1, 2, . . . , 12} − S1 =

{V τ1τ2
3 , V τ1τ2

11 } because τ1τ2 = (2, 3, 1, 4, 5, . . . , 12), where V τ1τ2
3 = {1, 4, 5, 6}

and V τ1τ2
11 = {11, 12, 2, 3}. Let C = N(V τ1τ2

3 ) ∩ S1 and D = N(V τ1τ2
11 ) ∩ S1.

Now we have

{V3, V4, V6, V10, V11, V12, V
τ1
2 , V τ2

3 } ⊂ C, {V1, V2, V5, V7, V8, V9} ∩ C = ∅ and

{V3, V8, V11, V12, V
τ1
2 , V τ2

3 } ⊂ D, {V1, V2, V4, V5, V6, V7, V9, V10} ∩D = ∅.

Let X be a vertex in J such that N(X) ∩ S1 = C. By considering the fact
that X is adjacent to V3, V4, V6, V10, V11, V12 but not to V1, V2, V5, V7, V8, V9, we
have that X = {6, 8, 9, 12}, {1, 4, 5, 6} or {2, 4, 9, 10}. Since X is adjacent to
both V τ1

2 = {1, 3, 4, 5} and V τ2
3 = {2, 4, 5, 6}, X is V τ1τ2

3 = {1, 4, 5, 6}. This
implies that φ also fixes V τ1τ2

3 .
Let Y be a vertex in J such thatN(Y )∩S1 = D. By considering the fact that

Y is adjacent to V3, V8, V11, V12 but not to V1, V2, V4, V5, V6, V7, V9, V10, one can
show that V = {6, 7, 10, 12}, {2, 4, 7, 8} or {11, 12, 2, 3}. Since Y is adjacent to
both V τ1

2 = {1, 3, 4, 5} and V τ2
3 = {2, 4, 5, 6}, Y is V τ1τ2

11 = {11, 12, 2, 3}. This
implies that φ fixes V τ1τ2

11 . Therefore φ fixes V τ1τ2
j for all j = 1, 2, . . . , 12.

Since φ fixes all vertices in {V π
j , V

πτ1
j , V πτ2

j | j = 1, 2, . . . , 12} with π = τ1,

φ also fixes V τ1τi
j for all i, j = 1, 2, . . . , 12 by Lemma 3.5. By a similar way, one

can show that φ fixes V τiτk
j for all i, j, k = 1, 2, . . . , 12. �

Lemma 3.7. For the merged Johnson graph J = J(12, 4)I with I = {1, 3},
S = {Vj , V

τ1
j , V τ2

j | j = 1, 2, . . . , 12} is a determining set.

Proof. Let φ be an automorphism of J fixing all vertices in S = {Vj, V
τ1
j , V τ2

j |
j = 1, 2, . . . , 12}. By Lemma 3.5, φ fixes V τi

j for all i, j = 1, 2, . . . , 12. Fur-

thermore, φ fixes V τiτk
j for all i, j, k = 1, 2, . . . , 12 by Lemma 3.6. By ap-

plying Lemma 3.6 again with π = τi, one can show that φ fixes V τiτkτℓ
j for all

i, j, k, ℓ = 1, 2, . . . , 12. Continuing the similar process, one can show that φ fixes
V

τi1τi2 ···τit
j for any positive integer t and for all i1, i2, . . . , it, j in [12]. Since

{τi | i = 1, 2, . . . , 12} generates symmetric group on [12], φ fixes all vertices of
J , i.e., S is a determining set. �

Let J be a merged Johnson graph J(2m,m)I with I ⊆ {1, 2, . . . ,m}. For
any v ∈ V (G), let v̄ be the vertex [2m]− v for convenience.

Lemma 3.8. Let J = J(n, k)I , where 1 ≤ k ≤ n
2 and ∅  I  {1, 2, . . . , k}.
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(1) For (n, k) = (2m+1,m) with m ≥ 3 and I = {1,m}, S1 = {V1, V2, . . .,
Vm+2} is a determining set.

(2) For (n, k) = (2m,m) with m ≥ 3 and I = {1}, S2 = {V1, V2, . . . , V2m}
∪ {{1, 2, . . . ,m− 2,m,m+ 2}} is a determining set.

Proof. (1) Note that Aut(J) is isomorphic to Sn+1 by Theorem 3.1. For any
automorphism ψ of J as a permutation of vertices of J , let ψ′ be a corresponding
permutation of [ñ] = [n] ∪ {∞}. Let φ be an automorphism of J fixing all
elements in S1. Since φ fixes V1, φ

′ fixes {1, 2, . . . ,m,∞} set-wisely or φ′ sends
{1, 2, . . . ,m,∞} to {m+ 1,m+ 2, . . . , 2m+ 1} set-wisely.

Case 1: φ′ fixes {1, 2, . . . ,m,∞} set-wisely.
Since φ fixes V2 and φ

′ fixes {1, 2, . . . ,m,∞} set-wisely, φ′ also fixes {2, 3, . . .,
m + 1,∞} set-wisely. This implies that φ′ fixes both 1 and m + 1. Using the
fact that φ fixes all elements in S1, one can see that φ′ fixes all elements in [ñ],
namely, φ is the identity element.

Case 2: φ′ sends {1, 2, . . . ,m,∞} to {m+ 1,m+ 2, . . . , 2m+ 1} set-wisely.
Since φ fixes V2 and φ′ sends {1, 2, . . . ,m,∞} to {m+1,m+2, . . . , 2m+1}

set-wisely, φ′ also sends {2, 3, . . . ,m+1,∞} to {m+2,m+3, . . . , 2m+1, 1} set-
wisely. Furthermore this implies that φ′(∞) belongs to {m+2,m+3, . . . , 2m+
1}. By the similar way, one can show that for any i = 1, 2, . . . ,m+2, φ′ sends
{i, i+ 1, . . . ,m+ i− 1,∞} to [n]− {i, i+ 1, . . . ,m+ i− 1} set-wisely.

Let φ′(∞) = a. Since a belongs to {m + 2, . . . , 2m + 1}, φ′ can not send
{a−m+1, a−m+2, . . . , a,∞} to [n]−{a−m+1, a−m+2, . . . , a} set-wisely,
which is a contradiction.

Therefore S1 = {V1, V2, . . . , Vm+2} is a determining set.
(2) Let α be the automorphism which sends v to v̄ for all v ∈ V (G). Then

the order of α is 2 and Aut(J) ∼= 〈α〉 × Sn.
Let ψ be an automorphism of J fixing all elements in S2. Since ψ fixes V1,

ψ is an automorphism induced by a permutation of [n] fixing {1, 2, . . . ,m} set-
wisely or ψ is a product of α and an automorphism induced by a permutation
of [n] sending {1, 2, . . . ,m} to {m+ 1,m+ 2, . . . , 2m} set-wisely.

If ψ is an automorphism induced by a permutation of [n], say ψ1, fixing
{1, 2, . . . ,m} set-wisely, then ψ1 also fixes {i, i + 1, . . . , i + m − 1} set-wisely
for all i = 1, 2, . . . , 2m because ψ fixes Vi for all i = 1, 2, . . . , 2m. This implies
that ψ is the identity. Hence we can assume that ψ is a product of α and an
automorphism induced by a permutation of [n], say ψ2, sending {1, 2, . . . ,m} to
{m+1,m+2, . . . , 2m} set-wisely. Since ψ fixes V2, ψ2 also sends {2, 3, . . . ,m+1}
to {m+ 2,m+ 3, . . . , 2m, 1} set-wisely. This implies that ψ2 exchanges 1 and
m+ 1. By a similar way, one can show that ψ2 exchanges i and m+ i for any
i = 1, 2, . . . ,m. But in this case, ψ does not fix {1, 2, . . . ,m − 2,m,m + 2}.
Therefore S2 is a determining set. �

Lemma 3.9. If J = J(2m,m){1,m−1} with m ≥ 4, then Dist(J) > 2.
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Proof. For any v ∈ V (J), let βv be the automorphism of V (J) exchanging v
and v̄ and fixing all other vertices. Let f : V (J) → {1, 2} be a coloring. If
there exists u ∈ V (J) such that f(u) = f(ū), then βu is a color-preserving
automorphism, and hence f is not 2-distinguishing. Assume that for all v ∈
V (J), f(v) and f(v̄) are distinct. Let φ be an automorphism of J induced by
a non-identity permutation of [2m]. Let

ψ =





∏

{u,ū} with f(u) 6=f(φ(u))

βu



φ.

Then ψ is a color-preserving automorphism. Therefore there is no 2-distinguish-
ing coloring, and hence Dist(J) > 2. �

For n = 2m with m ≥ 4, let Φ be the set of equipartitions of [n]. Note
that the size of Φ is 1

2

(

n
m

)

. The natural action of Sn on [n] induces an action
of Sn on Φ. Let π be a permutation in Sn satisfying that for all non-identity
permutation σ ∈ Sn, the number of equipartitions in Φ fixed by π is greater
than or equal to the number of equipartitions in Φ fixed by σ. Suppose that
there exist a permutation γ ∈ Sn and i1, i2, . . . , it ∈ [n] with t ≥ 3 such that
γ(ij) = ij+1 for all j = 1, 2, . . . , t − 1 and γ(it) = i1. Let γ̃ ∈ Sn be a
permutation that γ̃(i2) = i1, γ̃(it) = i3 and γ̃(ℓ) = γ(ℓ) for all ℓ ∈ [n] \ {i2, it}.
Note that all equipartitions in Φ fixed by γ are also fixed by γ̃. Furthermore
there is an equipartition fixed by γ̃ but not by γ. This implies that π is a
product of disjoint transpositions. For two permutations γ1, γ2 ∈ Sn, suppose
that there exist i1, i2, . . . , i6 ∈ [n] such that

γ1(i1) = i2, γ1(i2) = i1, γ1(i3) = i4, γ1(i4) = i3, γ1(i5) = i5, γ1(i6) = i6,

γ2(i1) = i2, γ2(i2) = i1, γ2(i3) = i3, γ2(i4) = i4, γ2(i5) = i5, γ2(i6) = i6,

and for all j ∈ [n] \ {i1, i2, . . . , i6}, γ1(j) = γ2(j). Then one can check that all
equipartitions fixed by γ1 are also fixed by γ2. This implies that π is a transposi-
tion or a product ofm disjoint transpositions. Note that the number of equipar-
titions fixed by a transposition is

(

2m−2
m−2

)

and the number of equipartitions fixed

by a product of m disjoint transpositions is 2m−1 if m is odd; 2m−1 +
(

m
m/2

)

if m is even. We aim to show inductively that
(

2m−2
m−2

)

> 2m−1 +
(

m
m/2

)

for all

even m with m ≥ 4. For m = 4,
(

2m− 2

m− 2

)

= 15 > 14 = 2m−1 +

(

m

m/2

)

.

Suppose that for some even m ≥ 4,
(

2m−2
m−2

)

> 2m−1 +
(

m
m/2

)

. Then
(

2m

m− 1

)

=
2m(2m− 1)

(m+ 1)(m− 1)

(

2m− 2

m− 2

)

> 2

(

2m−1 +

(

m

m/2

))

> 2m and

(

2m+ 2

m

)

=
(2m+ 2)(2m+ 1)2m(2m− 1)

(m+ 2)(m+ 1)m(m− 1)

(

2m− 2

m− 2

)
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> 22
(2m+ 1)(2m− 1)

(m+ 2)(m− 1)

(

2m−1 +

(

m

m/2

))

> 2m+1 +

(

m+ 2

m/2 + 1

)

.

Hence π is a transposition. Furthermore for any non-identity permutation
σ ∈ Sn, the number of equipartitions fixed by σ is at most

(

2m−2
m−2

)

.

Lemma 3.10. For n = 2m with m ≥ 4, let Φ be the set of equipartitions of

[n]. Now there is a 3-coloring c : Φ → {B,R, Y } of Φ such that only identity

permutation in Sn preserves all colors under the induced action of Sn on Φ.

Proof. Give a random coloring on Φ with three colors {B,R, Y }. For any non-
identity permutation σ of [2m], let Aσ be the event that σ preserves colors of
all equipartitions of [2m]. Note that the number of equipartitions fixed by σ is
at most

(

2m−2
m−2

)

. Namely, the number of equipartitions which are not fixed by
σ is at least

|Φ| −

(

2m− 2

m− 2

)

=
1

2

(

2m

m

)

−

(

2m− 2

m− 2

)

=
m

m− 1

(

2m− 2

m− 2

)

.

For any orbit O of σ whose size is t with t ≥ 2 under the action of S2m on
Φ, the probability that σ preserves colors of all equipartitions in O is 3−t+1,
which is less than 3−

t
2 . Hence we have

Pr(Aσ) ≤ 3−
m

2(m−1) (
2m−2
m−2 ).

Therefore

Pr(
⋃

σ∈Sn\{id}

Aσ) ≤
∑

σ∈Sn\{id}

Pr(Aσ) < ((2m)!− 1)3−
m

2(m−1) (
2m−2
m−2 )

≤ (2m)!3−
m

2(m−1) (
2m−2
m−2 ),

where id is the identity permutation of [n]. For n = 8, the number

n!3−
m

2(m−1) (
2m−2
m−2 )

is 4480
38 , and it is less than 1. Furthermore for any m ≥ 4,

(2m+ 2)!3−
m+1
2m ( 2m

m−1)

(2m)!3−
m

2(m−1) (
2m−2
m−2 )

=
(2m+ 2)(2m+ 1)

3
3m−2

2(m−1) (
2m−2
m−2 )

<
(2m+ 2)(2m+ 1)

3
3
2 (

2m−2
m−2 )

< 1

because

3
3
2 (

2m−2
m−2 ) = 3

3(2m−2)(2m−3)···(m+1)
2·(m−2)! = 3

12(m−1)(m−2)(2m−3)(2m−5)(2m−6)···(m+1)
12(m−2)(m−3)(m−4)···5·4

= 3
(m−1)(2m−3)(2m−5)(2m−6)···(m+1)

(m−3)(m−4)···5·4

> 3(m−1)(2m−3)(2m−5) > (2m+ 2)(2m+ 1).

This implies that for any m ≥ 4,

Pr(
⋃

σ∈Sn\{id}

Aσ) < 1
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V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

V τ1
2

V τ1
10

V τ2
3V τ2

11

X1

Figure 1. An asymmetric subgraph induced by a determining
set of J(12, 4){1,3}.

and hence there exists a 3-coloring c : Φ → {B,R, Y } such that the identity
permutation in S2m is the only color-preserving permutation under the induced
action of S2m on Φ. �

4. A proof of the main theorem

In this section, we prove Theorem 3.2 which is the main result in this paper.
For any positive integer i, let Di be the set of all vertices whose degrees are i.

Let J = J(n, k)I , where 2 ≤ k ≤ n
2 and ∅  I  {1, 2, . . . , k}.

Case 1: (n, k) 6= (5, 2) and 2 ≤ k < n−1
2 , and J 6= J(12, 4)I with I = {1, 3}

or {2, 4}.
In this case, Aut(J) = Aut(K(n, k)) as an acting group on the vertex set,

and hence Dist(J) = Dist(K(n, k)) = 2 by Proposition 2.3 and Lemma 2.4.
Case 2: J = J(12, 4)I with I = {1, 3} or {2, 4}.
Assume that J = J(12, 4)I with I = {1, 3}. Let S1 = {Vj , V

τ1
j , V τ2

j | j =

1, 2, . . . , 12} ∪ {X1 = {1, 3, 5, 7}} and let H1 be the subgraph of J induced by
S1 as illustrated in Figure 1. Then S1 is a determining set by Lemma 3.7. Let
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V1 V2 V3 V4 Vm−1 Vm Vm+1 Vm+2

· · ·

X2 Y2

Figure 2. An asymmetric subgraph induced by a determining
set of J(2m+ 1,m){1,m}.

ψ1 be an automorphism of H1. Note that the order of H1 is 17 and

D5 = {V4, V5, V8, V9}, D6 = {V1, V6, V7, V12, V
τ2
11 , X1},

D7 = {V3, V
τ1
2 , V τ1

10 }, D8 = {V2, V10, V
τ2
3 }, D9 = {V11}.

Since D9 = {V11}, ψ1(V11) = V11. The fact N(V11) ∩ D5 = {V8} implies
that ψ1(V8) = V8. Since N(V8) ∩ D5 = {V5, V9}, V4 is the only vertex in D5

which is not contained to N(V8) ∪ {V8}. Hence ψ1 fixes V4. By the fact that
N(V4) ∩ N(V8) ∩ D5 = {V5}, ψ1 fixes both V5 and V9. Note that N(V8) ∩
N(V11) = {V τ2

11 }. So ψ1 fixes V τ2
11 . The fact N(V4) ∩N(V8) ∩ D6 = {V7} and

N(V5)∩N(V9)∩D6 = {V6} implies that ψ1 fixes both V6 and V7. Furthermore
ψ1 fixes X1 = {1, 3, 5, 7} because N(V6) ∩ N(V7) = {X1}. Since N(V7) ∩
N(V11) ∩ D7 = {V τ1

10 } and N(V7) ∩ N(V11) ∩ D8 = {V10}, ψ1 also fixes both
V10 and V τ1

10 . Note that N(V4) ∩N(V6) ∩D7 = {V3} and N(V4) ∩N(V6) ∩D8

= {V τ2
3 }. This implies that ψ1(V3) = V3 and ψ1(V

τ2
3 ) = V τ2

3 . By the fact
N(V5)∩N(V11) = {V τ1

2 } and N(V9)∩N(V τ2
11 ) ∩D6 = {V 12}, ψ1 fixes both V τ1

2

and V12. Up to now, we know that ψ1 fixes all vertices in V (H) except V1 and
V2. Since the degree of V1 is 6 and that of V2 is 8, ψ1 also fixes both V1 and
V2. Therefore ψ1 is the identity, which implies that H is an asymmetric graph.
By Corollary 2.2, we have Dist(J) = 2.

For any J1 = J(12, 4)I with I = {2, 4}, Aut(J1) = Aut(J). Therefore
Dist(J1) = Dist(J) = 2.

Case 3: J = J(5, 2)I with I = {1} or {2}.
Since J(5, 2){2} is the Kneser graphK(5, 2) and J(5, 2){1} is its complement,

we have Dist(J) = 3 by Proposition 2.3.
Case 4: k = n−1

2 and I 6= k + 1− I.
If n = 5, then I = {1} or {2}, which means that I = k + 1 − I. Hence we

may assume that n ≥ 7. In this case, since Aut(J) = Aut(K(n, n−1
2 )) as an

acting group on the vertex set, one can find that Dist(J) = Dist(K(n, k)) = 2
by Proposition 2.3 and Lemma 2.4.

Case 5: k = n−1
2 and I = k + 1− I.

Let J = J(2m+ 1,m){1,m} with m ≥ 3. Let

S2 = {V1, V2, . . . , Vm+2} ∪ {X2, Y2},
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V1 V2 V3 V4 V2m−3 V2m−2 V2m−1 V2m

· · ·

X3 Y3 Z3

Figure 3. An asymmetric subgraph induced by a determining
set of J(2m,m){1}.

where X2 = {1, 2, . . . ,m−2,m,m+2} and Y2 = {2, 3, . . . ,m−1,m+1,m+3};
and let H2 be the subgraph of J induced by S2 as depicted in Figure 2. Now
S2 is a determining set of J by Lemma 3.8(1). Let ψ2 be an automorphism of
H2. Note that

D1 = {X2, Y2}, D2 = {V3, V4, . . . , Vm}, D3 = {Vm+1, Vm+2}, D4 = {V1, V2}.

Since V1 is the only vertex adjacent to all vertices in D3, ψ2(V1) = V1. This
implies that ψ2 fixes V2, X2 and Y2 because D4 = {V1, V2}; and X2 and Y2 are
only adjacent to V1 and V2, respectively. By the fact that Vm+2 is the only
vertex adjacent to all vertices in D4, ψ2(Vm+2) = Vm+2. This implies that
ψ2 also fixes Vm+1 because D3 = {Vm+1, Vm+2}. Since N(V2) ∩ D2 = {V3},
ψ2(V3) = V3. By a similar way, one can show that ψ2 fixes all vertices in H2,
and hence ψ2 is the identity. This means that H2 is asymmetric. By Corollary
2.2, we have Dist(J) = 2.

For any J2 = J(2m + 1,m)I satisfying I = k + 1 − I, Aut(J2) = Aut(J).
Therefore Dist(J2) = Dist(J) = 2.

Case 6: k = n
2 and I is neither {k} nor {1, 2, . . . , k − 1}, and I ′ 6= I ′′.

Let J = J(2m,m){1} with m ≥ 3. Let

S3 = {V1, V2, . . . , V2m} ∪ {X3, Y3, Z3},

where X3 = {1, 2, . . . ,m−2,m,m+2}, Y3 = {2, 3, . . . ,m−1,m+1,m+3} and
Z3 = {4, 5, . . . ,m+ 1,m+ 3,m+ 5}; and let H3 be the subgraph of J induced
by S3 as shown in Figure 3. Now S3 is a determining set of J by Lemma 3.8(2).
Let ψ3 be an automorphism of H3. Note that

D1 = {X3, Y3, Z3}, D3 = {V1, V2, V4} and D2 = V (H3)− (D1 ∪D3).

By a similar way with cases 2 and 5, one can show that ψ3 fixes all vertices in
H3, and hence ψ3 is the identity. So H3 is an asymmetric graph. By Corollary
2.2, we have Dist(J) = 2.

For any J3 = J(2m,m)I satisfying I 6= {k} nor {1, 2, . . . , k−1}, and I ′ 6= I ′′,
Aut(J3) = Aut(J). Therefore we have Dist(J3) = Dist(J) = 2.

Case 7: k = n
2 , I

′ = I ′′ and I is neither {k} nor {1, 2, . . . , k − 1}.
Note that for n ≤ 6, this case can not occur. Hence assume that n ≥ 8. Let

J = J(2m,m){1,m−1} with m ≥ 4. By Lemma 3.9, we have Dist(J) ≥ 3. Let
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f : V (J) → {1, 2, 3} be a random coloring satisfying that for any u ∈ V (J),
f(u) and f(ū) are distinct. Note that for any u ∈ V (J),

Pr({f(u), f(ū)} = {1, 2}) = Pr({f(u), f(ū)} = {1, 3})

= Pr({f(u), f(ū)} = {2, 3}) =
1

3
.

Let Φ be the set of equipartitions of [n]. Using a random coloring f :

V (J) → {1, 2, 3}, we can define the coloring f̃ : Φ → {B,R, Y } as follows: for

any {u, ū} ∈ Φ, let f̃({u, ū}) = B if {f(u), f(ū)} = {1, 2}; let f̃({u, ū}) = R

if {f(u), f(ū)} = {1, 3}; and let f̃({u, ū}) = Y if {f(u), f(ū)} = {2, 3}. Then

we can consider f̃ as a random 3-coloring of Φ. By Lemma 3.10, there is a
3-coloring f : V (J) → {1, 2, 3} such that only the identity permutation in

Sn preserves all colors of equipartitions in its corresponding 3-coloring f̃ :
Φ → {B,R, Y }. This implies that there exists a 3-distinguishing coloring
f : V (J) → {1, 2, 3}. Therefore Dist(J) ≤ 3, and hence Dist(J) = 3.

For any J4 = J(2m,m)I satisfying I ′ = I ′′ and I is neither {k} nor {1, 2, . . .,
k − 1}, Aut(J4) = Aut(J). Therefore Dist(J4) = Dist(J) = 3.

Case 8: k = n
2 and I = {k} or {1, 2, . . . , k − 1}.

Let J = J(2m,m){m}. Then J is composed of
(2mm )
2 components which

are isomorphic to K2. Note that a coloring f : V (J) → {1, 2, . . . , r} is an
r-distinguishing if and only if for any vertex u ∈ V (J), f(u) and f(ū) are
distinct and for any two vertex v, w ∈ V (J) contained to different components,
{f(v), f(v̄)} 6= {f(w), f(w̄)}. Hence Dist(J) is the smallest integer r such that
(

r
2

)

≥
(2mm )
2 . Therefore Dist(J) = ⌈

1+
√

1+4(2mm )
2 ⌉.

For any J5 = J(2m,m)I with I = {1, 2, . . . ,m − 1}, J5 is the complement

of J . Hence Dist(J5) = Dist(J) = ⌈
1+

√
1+4(2mm )
2 ⌉.
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