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BERTRAND CURVES AND RAZZABONI SURFACES IN

MINKOWSKI 3-SPACE

Chuanyou Xu, Xifang Cao, and Peng Zhu

Abstract. In this paper, we generalize some results about Bertrand
curves and Razzaboni surfaces in Euclidean 3-space to the case that the
ambient space is Minkowski 3-space. Our discussion is divided into three
different cases, i.e., the parent Bertrand curve being timelike, spacelike
with timelike principal normal, and spacelike with spacelike principal nor-
mal. For each case, first we show that Razzaboni surfaces and their mates
are related by a reciprocal transformation; then we give Bäcklund trans-
formations for Bertrand curves and for Razzaboni surfaces; finally we

prove that the reciprocal and Bäcklund transformations on Razzaboni
surfaces commute.

1. Introduction

A Bertrand curve is one of a pair of curves having the same principal nor-
mals. It was named after mathematician J. Bertrand, who made the first study
in 1850. A surface is termed a Razzaboni surface if it is spanned by a one-
parameter family of geodesic Bertrand curves. Much literature is devoted to
the study of Bertrand curves and Razzaboni surfaces in Euclidean 3-space. For
example, Razzaboni [9] got a Bäcklund transformation for Bertrand curves;
Bruke [2] showed that if the binormals of two curves are parallel, then they

are both Bertrand curves; Ekmekci and İlarslan [3] got some important char-
acterizations for Bertrand curves; Izumiya and Takeuchi [4] obtained generic
properties of Bertrand curves; Schief [11] discussed the integrable nature of
Bertrand curves and Razzaboni surfaces in the context of modern soliton the-
ory; Balgetir, Bektas, Ergöt [1] and Külahci, Ergüt [6] focused on the nonnull
and AW(k)-type Bertrand curves in Lorentzian 3-space, respectively; Yilmaz
and Bektas [12] studied the general properties of Bertrand curves and their
characterizations in Riemann-Otsuki space.

In this paper, we discuss Bertrand curves and Razzaboni surfaces in Minko-
wski 3-space. We focus on three different cases: 1. the parent Bertrand curve
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cal transformation, Bäcklund transformation.

c©2015 Korean Mathematical Society

377



378 C. XU, X. CAO, AND P. ZHU

is timelike; 2. the parent Bertrand curve is spacelike with timelike principal
normal; 3. the parent Bertrand curve is spacelike with spacelike principal
normal.

The paper is organized as follows. In Section 2, we give some preliminar-
ies. In Section 3, for the case that the parent Bertrand curve is timelike,
we first demonstrate Razzaboni surfaces and their mates are related by a re-
ciprocal transformation which induces an invariance of the Gauss-Mainardi-
Codazzi equations, then we give Bäcklund transformations for Bertrand curves
and Razzaboni surfaces, and finally we show that the reciprocal and Bäcklund
transformation on Razzaboni surfaces commute. For the case that the parent
Bertrand curve is spacelike with timelike principal normal or with spacelike
principal normal, we have similar results, which are given in Sections 4 and 5,
respectively.

2. Preliminaries

In this paper, we are concerned with curves and surfaces in Minkowski 3-
space E2,1 with standard metric 〈, 〉 = dx2

1 + dx2
2 − dx2

3. Then for two vectors
u = (u1, u2, u3),v = (v1, v2, v3) ∈ E2,1, their inner product equals

(2.1) 〈u,v〉 = u1v1 + u2v2 − u3v3,

and their vector product is defined as

(2.2) u× v =
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∣
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.

Definition 2.1 (see [7, 8]). A vector v ∈ E2,1 is called spacelike if 〈v,v〉 > 0
or v = 0, timelike if 〈v,v〉 < 0, and lightlike(or null) if 〈v,v〉 = 0 and v 6= 0.

By direct calculations, we have the following two propositions.

Proposition 2.2. Let v,w be two vectors in E2,1 satisfying 〈v,w〉 = 0 and

v,w 6= 0. 1. If v is spacelike, then w may be spacelike, timelike and lightlike;
2. If v is timelike, then w must be spacelike; 3. If v is lightlike, then w may be

spacelike and lightlike.

Proposition 2.3. Let u,v ∈ E2,1 be two nonzero linearly independent vectors.

If both u and v are spacelike (resp. timelike, lightlike) vectors, then their vector

product u× v is timelike (resp. spacelike, spacelike).

Let r : I ⊂ R → E2,1 be a curve C in E2,1 with s as its parameter. Denote
by t = rs its tangent vector field and let 〈t, t〉 = ε1. If ε1 = ±1, then s is called
arc length parameter and the constant ε1 is called the causal character of C.
In the following we will use the arc length parameter.

Definition 2.4 (see [7, 8]). A curve C in E
2,1 is called spacelike (resp. timelike,

lightlike) at s if its tangent vector rs is spacelike (resp. timelike, lightlike). The
curve C is called spacelike (resp. timelike, lightlike) if it is for any s ∈ I.
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For a nonlightlike curve C, assume 〈ts, ts〉 6= 0. Then the function κ =
√

|〈ts, ts〉| is called its curvature. Let ε2 = 〈ts/κ, ts/κ〉 and call it the second

causal character of C. Define the principal normal vector field n along C by
ts = κn. Finally, the binormal vector field b is defined by b = −ε1ε2t × n,
and ε3 = 〈b,b〉 is called the third causal character of C. Now we have the
well-known Serret-Frenet relations:

(2.3)





t

n

b





s

=





0 κ 0
−ε1ε2κ 0 τ

0 −ε2ε3τ 0









t

n

b



 .

Note that ε1ε2ε3 = −1. When ε1 = −1, the curve is timelike. When ε1 = 1, the
curve is spacelike with either spacelike principal normal or timelike principal
normal. The orthonormal triad (t,n,b) satisfies

(2.4) t = −ε2ε3n× b, n = −ε1ε3b× t, b = −ε1ε2t× n.

Definition 2.5 (see [1]). A curve C : I → E2,1 with κ 6= 0 is called a Bertrand
curve if there exists another curve C∗ : I → E2,1 such that at each s ∈ I, C and
C∗ share the same principal normal lines. In this case C∗ is called a Bertrand
mate of C.

Sometimes the Bertrand mate C∗ of C is also called offset curve.

Example 2.6. All Planar curves in E2,1 are Bertrand curves.

Example 2.7. For any non-zero constants a, b satisfying a2 > b2, the curves

r = (a cosh
s

√
a2 − b2

,
bs

√
a2 − b2

, a sinh
s

√
a2 − b2

)

and

r = (a cos
s

√
a2 − b2

, a sin
s

√
a2 − b2

,
bs

√
a2 − b2

)

are both Bertrand curves.

For surfaces in E2,1, we have the following definition.

Definition 2.8 (see [5, 8]). A surface in E2,1 is called timelike(resp. spacelike)
if its normal vector field is spacelike (resp. timelike).

3. Timelike Bertrand curves and timelike Razzaboni surfaces

In this section, we always assume that the parent Bertrand curve is timelike.
We discuss Bertrand mates, Razzaboni surfaces, Bäcklund transformations for
Bertrand curves and Razzaboni surfaces. We also give a commutativity theo-
rem.
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3.1. Bertrand curves and their mates

Let C be a Bertrand curve with position vector r and C∗ its offset curve.
Then the position vector r∗ of C∗ is given by

(3.1) r∗ = r+An,

where A is a non-zero constant. Analogous to the classic theorem in Euclidean
3-space, we have:

Theorem 3.1 (see [1, 7]). Let C be a non-planar timelike curve in E2,1. Then

C is a Bertrand curve if and only if there exist two constants A,B(6= 0) such

that its curvature κ and torsion τ satisfy a linear relation

(3.2) −Aκ+Bτ = 1.

The orthonormal triad (t∗,n∗,b∗), curvature κ∗ and torsion τ∗ of the Bert-
rand mate C∗ are uniquely determined by those of its parent Bertrand curve
C. In fact, we have:

Theorem 3.2. Let C be a timelike Bertrand curve with orthonormal triad

(t,n,b), curvature κ and torsion τ , and C∗ be its Bertrand mate. Then the

orthonormal triad (t∗,n∗,b∗) along C∗ is given by

(3.3) t∗ =
Bt+Ab

D
, n∗ = n, b∗ = δ

At+Bb

D
,

where δ = 1 if B2 > A2, δ = −1 if B2 < A2, and D =
√

|B2 −A2|. The

curvature, torsion and arc length of C∗ are given by

(3.4) κ∗ =
Bκ−Aτ

δ(B2 −A2)τ
, τ∗ =

1

δ(B2 −A2)τ
, ds∗ = Dτds.

Note that the curvature κ∗ and torsion τ∗ of C∗ satisfy

(3.5) A∗κ∗ +B∗τ∗ = 1,

where A∗ = δA, B∗ = δB.

Proof. We only prove Theorem 3.2 for the case B2 > A2. For the other case
B2 < A2, it can be proved similarly. Differentiating with respect to s on both
sides of (3.1), and by virtue of (3.2), yields

(3.6) r∗s∗
ds∗

ds
= Bτt+Aτb.

Then we have

(3.7) (r∗s∗)
2(
ds∗

ds
)2 = −(B2 −A2)τ2.

So ds∗/ds =
√
B2 −A2τ , and (r∗s∗)

2 = t∗2 = −1. The first equation of (3.3)
and the third equation of (3.4) are proved. By virtue of b∗ = t∗×n∗ and n∗ = n

we have the third equation of (3.3). From κ∗ = 〈t∗s∗ ,n∗〉 and τ∗ = −〈b∗

s∗ ,n
∗〉

we have the first and second equations of (3.4). �
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3.2. Razzaboni surfaces

The following definition is the Minkowski 3-space version of the classic Raz-
zaboni surface in Euclidean 3-space (see [10]).

Definition 3.3. A surface Σ in E2,1 is termed a Razzaboni surface if it is
spanned by a one-parameter family of geodesic Bertrand curves with the same
parameters A and B.

It is well known that a curve C is a geodesic on a surface Σ in E2,1 if and
only if the principal normal n of C is parallel to the normal N of Σ. This
implies that if a surface Σ is spanned by a one-parameter family of geodesic
Bertrand curves C(t) with the same parameters A and B, then the Bertrand
mates C∗(t) form a parallel surface Σ∗ on which they are likewise geodesics.
So we have:

Theorem 3.4. Any Razzaboni surface Σ in E2,1 with position vector r admits

a parallel (dual) Razzaboni surface Σ∗ with position vector r∗ defined by

(3.8) r∗ = r+An.

Let the curve C move along its binormal vector b, i.e., rt = gb, and Σ be
the surface swept out by the moving curve. The first fundamental form of Σ is

(3.9) dr2 = −ds2 + g2dt2.

Since the principal normal n of the moving curve C is parallel to the normal
N of the surface Σ, C is a geodesic on Σ. By 〈rs, rt〉 = 0, the one-parameter
family of geodesics and their orthogonal trajectories form coordinate lines on
the surface Σ. The variation of the orthonormal triad (t,n,b) in s-direction
is given by the Serret-Frenet relations (2.3). The t-dependence must be of the
general form

(3.10)





t

n

b





t

=





0 α β

α 0 γ

β −γ 0









t

n

b



 .

The compatibility of rst = rts yields α = −τg, β = gs. Therefore

(3.11)





t

n

b





t

=





0 −τg gs
−τg 0 γ

gs −γ 0









t

n

b



 .

(t,n,b)st = (t,n,b)ts yields that κ, τ, g, γ satisfy

(3.12) gss = κγ + τ2g, κt = −τsg − 2τgs, τt = γs − κgs.

The systems (3.12) may be regarded as the Gauss-Mainardi-Codazzi equa-
tions of the surface Σ. For a given solution of (3.12), the linear systems (2.3),
(3.11) is compatible and therefore determine a surface Σ up to its position in
Minkowski 3-space E2,1. If, in addition, the constraint (3.2) is imposed, then
Σ is guaranteed to be a Razzaboni surface.



382 C. XU, X. CAO, AND P. ZHU

The transition from Razzaboni surfaces to their duals induces an invariance
of the governing equations (3.12) and (3.2). In fact, we have:

Theorem 3.5. The nonlinear system (3.12) and (3.2) are invariant under the

reciprocal transformation

(3.13)

ds∗ =
√

|B2 −A2|τds − δ
A(Bτg + g +Aγ)
√

|B2 −A2|
dt, dt∗ = dt,

κ∗ =
Bκ−Aτ

δ(B2 −A2)τ
, τ∗ =

1

δ(B2 −A2)τ
, A∗ = δA,

B∗ = δB, g∗ =
Bg +ABγ +A2τg
√

|B2 −A2|
,

γ∗ =
δ

√

|B2 −A2|
[Agτ +Bγ +

A(Bτg + g +Aγ)

(B2 −A2)τ
],

where δ is given in Theorem 3.2.

Proof. We only prove the theorem for the case B2 > A2. For the other case
B2 < A2, it can be proved similarly. It is readily verified that the differentials
ds∗ and dt∗ defined by the first and second expressions of (3.13) are exact
modulo (3.2) and (3.12). This guarantees the existence of the coordinates s∗

and t∗ and hence the corresponding derivatives read

(3.14) ∂s∗ =
1

√
B2 −A2τ

∂s, ∂t∗ = ∂t −
A(Bτg + g +Aγ)

(B2 −A2)τ
∂s.

Differentiation of the dual position vector (3.8) then shows that

(3.15) r∗s∗ = t∗, r∗t∗ = g∗b∗,

where t∗ and b∗ as given by the first and third expressions of (3.3) constitute
the unit tangent and binormal to the Bertrand curves on Σ∗. Accordingly, s∗

represents arc length of the Bertrand curves on Σ∗ and t∗ parametrizes their
orthogonal trajectories. The remaining quantity γ∗ = 〈n∗

t∗ ,b
∗〉 is readily

verified to be the last expression of (3.13). �

In the case B 6= 0 in Theorem 3.5, the reciprocal character of the above
invariance encoded in ∗∗ = id is illustrated by the compact relations

(

g∗

h∗

)

= S

(

g

h

)

, S∗S = I,(3.16)

where the constant matrix S is given by

S = δ

√

|B2 −A2|

B

(

1 AB2

B2
−A2

δ A
B2 1

)

(3.17)

and

h = γ +
A(Bgτ + g)

B2
.(3.18)
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3.3. Bäcklund transformations

Taking A = a sinhσ, B = a coshσ, (3.2) becomes

(3.19) −κ sinhσ + τ coshσ =
1

a
.

Then we have:

Theorem 3.6. Let C : r = r(s) be a timelike Bertrand curve and (t,n,b) be

its orthonormal triad. Then for any non-zero constant λ,

(3.20) r′ = r+ a sinhλ(coshσ sinhφt+ coshφn+ sinhσ sinhφb)

is the position vector of another Bertrand curve C′(λ), where the function φ

satisfies the first-order ordinary differential equation

φs =
sinhλ

a(coshσ + coshλ)
coshφ− κ coshσ + τ sinhσ

−
sinhσ

a(coshσ + coshλ)
.(3.21)

The orthonormal triad (t′,n′,b′) of C′(λ) is given by

t′ =
coshσ + coshλ+ sinhλ coshφ(coshλ sinhσ + sinhλ coshσ coshφ)

1 + coshλ coshσ + sinhλ sinhσ coshφ
t

+
sinhλ sinhφ(sinhλ coshφ− sinhσ)

1 + coshλ coshσ + sinhλ sinhσ coshφ
n+ sinhλ coshφb,(3.22)

n′ =−
sinhλ sinhφ(sinh λ coshσ coshφ+ coshλ sinh σ)

1 + coshλ coshσ + sinhλ sinhσ coshφ
t

−
sinhλ coshφ(sinh λ coshφ− sinhσ)− coshλ(coshσ + coshλ)

1 + coshλ coshσ + sinhλ sinhσ coshφ
n

− sinhλ sinhφb,(3.23)

b′ =
sinhλ(sinh σ sinhλ+ coshσ coshλ coshφ+ coshφ)

1 + coshλ coshσ + sinhλ sinhσ coshφ
t

+
sinhλ sinhφ(coshσ + coshλ)

1 + coshλ coshσ + sinhλ sinhσ coshφ
n+ coshλb.(3.24)

So (3.21) defines a Bäcklund transformation C → C′(λ) on Bertrand curves,

which obeys the constant length property, that is, the distance between corre-

sponding points of C and C′(λ) only depends on the parameter λ.

Proof. Differentiation with respect to s on both sides of (3.20) yields

(3.25) r′s = ft′,

where t′ is given by (3.22), and

(3.26) f =
sinhλ sinhσ

coshσ + coshλ
coshφ+

1 + coshλ coshσ

coshσ + coshλ
.
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Differentiation with respect to s on both sides of (3.25) gives

(3.27) t′s = fκ′n′,

where n′ is given by (3.23), and

κ′ =−
1

a sinhσ
+ cothσ

τ

f2
.(3.28)

Note that for σ = 0, i.e., τ = 1/a, the above expression for κ′ is still valid. In
fact, in this case, we have

(3.29) κ′ = −κ+
2 sinhλ coshφ

a(1 + coshλ)
.

From b′ = t′ × n′, we have (3.24). Then

(3.30) b′

s = −fτ ′n′, τ ′ =
τ

f2
.

From (3.26) and the second equation of (3.30) we have

(3.31) −κ′ sinhσ′ + τ ′ coshσ′ =
1

a
.

So the curves C′(λ) indeed constitute a family of Bertrand curves with a′ = a

and σ′ = σ. �

By (3.24),

(3.32) 〈b,b′〉 = coshλ.

So we have:

Corollary 3.7. The angle between the binormals b and b′ of C and C′(λ) is

constant.

Now we give a Bäcklund transformation on Razzaboni surfaces.

Theorem 3.8. Let Σ : r = r(s, t) be a Razzaboni surface parametrized in terms

of geodesic coordinates s, t. Then for any non-zero constant λ, the system on

φ composed of (3.21) and

φt =
a sinhλ(coshλ+ coshσ)(coshσγ + sinhσgτ) + sinhλ sinhσg

a coshλ(coshσ + coshλ)
coshφ

+ gs tanhλ sinhφ+ sinhσγ + coshσgτ

+
1 + coshλ coshσ

a coshλ(coshσ + coshλ)
g(3.33)

is integrable; moreover, substituting any solution φ of the integrable system into

(3.20) gives another Razzaboni surface Σ′(λ).
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Proof. Firstly, from (3.12) and (3.19), by a tedious calculation, we have the
compatibility condition φst = φts.

Secondly, it is readily verified that

(3.34) r′t = g′b′,

where

g′ =
g

coshλ
+ a tanhλ coshσ(sinhφgs + coshσ coshφh),

and h is given by (3.18).
Let N′ be the normal vector field to the surface Σ′. Then

N′ = r′s × r′t = (ft′)× (g′b′) = −fg′n′.

So Σ′ is a Razzaboni surface. �

Example 3.9. Let C be the curve

(3.35) r = (a sinhσ cos
s

a
, a sinhσ sin

s

a
, s coshσ),

where a(> 0), σ are arbitrary constants, s is its arc parameter. Its unit tangent
vector field is given by

(3.36) t = (− sinhσ sin
s

a
, sinhσ cos

s

a
, coshσ).

Note that 〈t, t〉 = −1. So C is timelike. Its curvature κ and torsion τ are given
by

(3.37) κ =
sinhσ

a
, τ =

coshσ

a
,

and they satisfy (3.19).
Let C move along its binormal vector b, i.e., rt = gb, and let Σ be the

corresponding Razzaboni surface. Solving (3.12) gives

(3.38) g = constant, γ = −
cosh2 σ

a sinhσ
g.

Substituting (3.37) and (3.38) into (2.3) and (3.11) yields

t =(− sinhσ sin θ, sinhσ cos θ, coshσ),

n =(− cos θ,− sin θ, 0),(3.39)

b =(coshσ sin θ,− coshσ cos θ,− sinhσ),

where

θ =
s

a
−

coshσg

a sinhσ
t.

Then by

(3.40) rs = t, rt = gb

we get the position vector of Σ

(3.41) r = (a coshσ cos θ, a coshσ sin θ, a coshσθ −
g

sinhσ
t).
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If the parameter λ satisfies sinh2 σ > sinh2 λ, then substituting (3.37) and
(3.38) into (3.21) and (3.33) yields

(3.42) φ = 2 arctanh

(

√

sinhσ − sinhλ

sinhσ + sinhλ
tanh

√

sinh2 σ − sinh2 λ

2
ϕ

)

,

where

ϕ =
sinhσs− (1 + coshσ coshλ)gt

a sinhσ coshλ(coshσ + coshλ)
.

Substituting (3.35), (3.39) and (3.42) into (3.20) one get the position vector of
another Razzaboni surface Σ′.

If we take A = a coshσ, B = a sinhσ, then (3.2) becomes

(3.43) −κ coshσ + τ sinhσ =
1

a
.

Analogous to Theorems 3.6 and 3.8, we have:

Theorem 3.10. Let C : r = r(s) be a timelike Bertrand curve and (t,n,b) be
its orthonormal triad. Then for any non-zero constant λ,

(3.44) r′ = r+ a coshλ(sinh σ sinφt+ cosφn+ coshσ sinφb)

is the position vector of another Bertrand curve C′(λ), where the function φ

satisfies the first-order ordinary differential equation

φs =
− coshλ

a(sinhσ + sinhλ)
cosφ+ κ sinhσ − τ coshσ

+
coshσ

a(sinhσ + sinhλ)
.(3.45)

The orthonormal triad (t′,n′,b′) of C′(λ) is given by

t′ =
sinhσ + sinhλ− coshλ cosφ(sinh λ coshσ + coshλ sinhσ cosφ)

1− sinhλ sinhσ − coshλ coshσ cosφ
t

+
coshλ sinφ(coshλ cosφ− coshσ)

1− sinhλ sinhσ − coshλ coshσ cosφ
n+ coshλ cosφb,(3.46)

n′ =−
coshλ sinφ(coshλ sinhσ cosφ+ sinhλ coshσ)

1− sinhλ sinhσ − coshλ coshσ cosφ
t

−
coshλ cosφ(coshλ cosφ− coshσ)− sinhλ(sinh σ + sinhλ)

1− sinhλ sinhσ − coshλ coshσ cosφ
n

+ coshλ sinφb,(3.47)

b′ =
coshλ(sinh σ sinhλ cosφ+ coshσ coshλ− cosφ)

1− sinhλ sinhσ − coshλ coshσ cosφ
t

−
coshλ sinφ(sinh σ + sinhλ)

1− sinhλ sinhσ − coshλ coshσ cosφ
n+ sinhλb.(3.48)
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So (3.45) defines a Bäcklund transformation C → C′(λ) on Bertrand curves,

which obeys the constant length property, that is, the distance between corre-

sponding points of C and C′(λ) only depends on the parameter λ.

Theorem 3.11. Let Σ : r = r(s, t) be a Razzaboni surface parametrized in

terms of geodesic coordinate s, t. Then for any nonzero constant λ(6= −σ), the
system on φ composed of (3.45) and

φt =−
a coshλ(sinh λ+ sinhσ)(sinh σγ + coshσgτ) + coshλ coshσg

a sinhλ(sinh σ + sinhλ)
cosφ

+ gs cothλ sinφ− coshσγ − sinhσgτ

+
1− sinhλ sinhσ

a sinhλ(sinh σ + sinhλ)
g(3.49)

is integrable; moreover, substituting any solution φ of the integrable system into

(3.44) gives another Razzaboni surface Σ′(λ).

Remark 3.12. As λ approaches −σ, |r′ − r| approaches a coshσ = A, which
is precisely the distance between the Bertrand curve C and its dual C∗. So
C 7→ C∗ may be regarded as a particular Bäcklund transformation.

Remark 3.13. For A = a sinhσ, B = a coshσ, the parent Bertrand curve C

is timelike. From (3.22), 〈t′, t′〉 = −1. So all the Bertrand curves C′(λ)
in Theorem 3.6 are timelike. However, for A = a coshσ, B = a sinhσ, the
parent Bertrand curve C is timelike, from (3.46)-(3.48) we have 〈t′, t′〉 = 1,
〈n′,n′〉 = 1. So all the Bertrand curves C′(λ) in Theorem 3.10 are spacelike
with spacelike principal normal.

Remark 3.14. Since the Bertrand curve C is timelike, the Razzaboni surfaces
Σ in Theorems 3.8 and 3.11 are timelike. From (3.23) and (3.47), 〈N′,N′〉 =
〈n′,n′〉 = 1, i.e., the Razzaboni surfaces Σ′(λ) in Theorems 3.8 and 3.11 are
also timelike. So we have two different Bäcklund transformations on timelike
Razzaboni surfaces.

3.4. A commutativity theorem

From a Razzaboni surface Σ, by Theorem 3.4, we have the dual transforma-
tion R : Σ 7→ Σ∗, and by Theorem 3.8, we have the Bäcklund transformation
B : Σ∗ 7→ Σ∗′. Similarly, we have B : Σ 7→ Σ′ and R : Σ′ 7→ Σ′∗. In the
following, we prove that the two transformations R and B commute for the
case A = a sinhσ,B = a coshσ.

Let s, s∗, s′, s′
∗

, s∗′ be the arc lengths of the geodesic Bertrand curves on
surfaces Σ,Σ∗,Σ′,Σ′∗,Σ∗′ respectively. From the third equation of (3.4) we
have

(3.50) s∗s = aτ = 1− a sinhσφs|λ=0.

So we may take

(3.51) s∗ = s− a sinhσφ|λ=0.
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On the other hand, from (3.25) we have

(3.52) s′s = f = aτ + a sinhσφs.

So we may take

(3.53) s′ = s∗ + a sinhσφ.

Let φ∗ be a solution of the integrable system composed of (3.21) and (3.33)
with (κ, τ, a, σ) replaced by (κ∗, τ∗, a∗, σ∗). By (3.4),

σ∗ = −σ, a∗ = a.

Then

s∗
′ = s∗∗ + a∗ sinhσ∗φ∗ = s− a sinhσφ∗,

and the surface Σ∗′ is given by

(3.54) r∗
′ = r∗ + a sinhλ(coshσ sinhφ∗t∗ + coshφ∗n∗ − sinhσ sinhφ∗b∗).

The surface Σ′∗ is given by

(3.55) r′∗ = r′ + a′ sinhσ′n′ = r′ + a sinhσn′.

Note that

(3.56) φ∗ = 2 arctanh

(

1 + cosh(λ− σ)

coshλ+ coshσ
tanh

φ

2

)

is a solution of the integrable system composed of (3.21) and (3.33) with
(κ, τ, a, σ) replaced by (κ∗, τ∗, a∗, σ∗). Substituting (3.56) into (3.54) yields
that the two surfaces Σ∗′ and Σ′∗ coincide.

In summary, we have proved the following result.

Theorem 3.15. The transformations B and R in Theorems 3.4 and 3.8 com-

mute, i.e.,

(3.57) B ◦ R = R ◦ B,

where the associated functions φ and φ∗ are related by (3.56).

Remark 3.16. For the case A = a coshσ,B = a sinhσ, in order that the two
transformation B andR commute, the parameter λ should be purely imaginary.
We do not consider this case.

4. Spacelike Bertrand curves with timelike principal normal

In this section, we consider the case that the parent Bertrand curve is space-
like with timelike principal normal. We have similar results as Section 3. In
the following, we list the main results but omit all the proofs.

Theorem 4.1. Let C be a spacelike curve with timelike principal normal with

its curvature κ and torsion τ satisfying (3.2), and C∗ be its Bertrand mate.
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Then the orthonormal triad (t∗,n∗,b∗), curvature κ∗, torsion τ∗ and arc length

s∗ of C∗ are given by

(4.1)

t∗ =
Bt+Ab

D
, n∗ = n, b∗ =

−At+ Bb

D
,

κ∗ =
Bκ+Aτ

(A2 +B2)τ
, τ∗ =

1

(A2 +B2)τ
, ds∗ = Dτds,

where D =
√
A2 +B2.

Note that the curvature κ∗ and torsion τ∗ of C∗ satisfy

(4.2) −A∗κ∗ +B∗τ∗ = 1,

where A∗ = −A, B∗ = B.
Let the curve C move along its binormal vector b, i.e., rt = gb. Then the

surface Σ swept out by the moving curve has its first fundamental form

(4.3) dr2 = ds2 + g2dt2.

The compatibility condition rst = rts yields

α = τg, β = gs,

and (t,n,b)st = (t,n,b)ts yield that κ, τ, g, γ satisfy the following system:

(4.4) gss = κγ − τ2g, κt = τsg + 2τgs, τt = γs − κgs,

where α, β, γ satisfy (3.10). Then we have:

Theorem 4.2. The nonlinear system (4.4) and (3.2) are invariant under the

reciprocal transformation

(4.5)

ds∗ =
√

A2 +B2τds+
A(Bτg + g +Aγ)

√
A2 +B2

dt, dt∗ = dt,

κ∗ =
Bκ+Aτ

(A2 +B2)τ
, τ∗ =

1

(A2 +B2)τ
, A∗ = −A,

B∗ = B, g∗ =
Bg +ABγ −A2τg

√
A2 +B2

,

γ∗ =
1

√
A2 +B2

[Bγ −Agτ −
A(Bτg + g +Aγ)

(B2 +A2)τ
].

Taking A = a sinσ,B = a cosσ, then (3.2) reduces to

(4.6) −κ sinσ + τ cosσ =
1

a
.

Then we have the following Bäcklund transformation.

Theorem 4.3. Let Σ : r = r(s, t) be a Razzaboni surface parametrized in terms

of geodesic coordinate s, t. Then for any non-zero constant λ(6= π/2± σ),

(4.7) r′ = r+ a cosλ(cosσ sinhφt+ coshφn+ sinσ sinhφb)
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gives another Razzaboni surface Σ′(λ), where the function φ is a solution of the

integrable system

φs =−
cosλ

a(cosσ + sinλ)
coshφ− κ cosσ − τ sinσ +

sinσ

a(cosσ + sinλ)
,(4.8)

φt =
a cosλ(sinλ+ cosσ)(sin σgτ − coshσγ) + cosλ sinσg

a sinλ(cos σ + sinλ)
coshφ

− gs cotλ sinhφ− sinσγ − cosσgτ −
1 + sinλ cosσ

a sinλ(cos σ + sinλ)
g.(4.9)

The Bäcklund transformation Σ 7→ Σ′ obeys the constant length property, i.e.,

the distance between corresponding points on Σ and Σ′ only depends on the

Bäcklund parameter λ.

Remark 4.4. As λ approaches −π/2 ± σ, |r′ − r|2 approaches −a2 sin2 σ =
−A2, which is precisely the distance between the parent Bertrand curve C

and its mate C∗. So C 7→ C∗ may be regarded as a particular Bäcklund
transformation.

For the same A = a sinσ,B = a cosσ, if we take alternative parameters,
then we can obtain another Bäcklund transformation.

Theorem 4.5. Let Σ : r = r(s, t) be a Razzaboni surface parametrized in terms

of geodesic coordinate s, t. Then for any constant λ,

(4.10) r′ = r+ a sinhλ(cosσ coshφt+ sinhφn+ sinσ coshφb)

gives another Razzaboni surface Σ′(λ), where the function φ is a solution of the

integrable system

φs =−
sinhλ

a(cosσ + coshλ)
sinhφ− κ cosσ − τ sinσ

+
sinσ

a(cosσ + coshλ)
,(4.11)

φt =
a sinhλ(coshλ+ cosσ)(sinσgτ − cosσγ) + sinhλ sinσg

a coshλ(cos σ + coshλ)
sinhφ

− gs tanhλ coshφ− sinσγ − cosσgτ

−
1 + coshλ cosσ

a coshλ(cosσ + coshλ)
g.(4.12)

The Bäcklund transformation Σ 7→ Σ′ obeys the constant length property, i.e.,

the distance between corresponding points on Σ and Σ′ only depends on the

Bäcklund parameter λ.

Remark 4.6. Since the parent Bertrand curve C is spacelike with timelike
principal normal, we have 〈t′, t′〉 = 1, 〈n′,n′〉 = −1. So all the Bertrand
curves C′(λ) in Theorems 4.3 and 4.5 are spacelike with timelike principal nor-
mal. Therefore we have two different Bäcklund transformations on spacelike
Bertrand curves with timelike principal normal.
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Remark 4.7. Since the parent Bertrand curve C is spacelike with timelike prin-
cipal normal, the Razzaboni surfaces Σ in Theorems 5.4 and 5.5 are spacelike.
Analogous to Theorems 3.8 and 3.11, 〈N′,N′〉 = 〈n′,n′〉 = −1, i.e., the Raz-
zaboni surfaces Σ′(λ) in Theorems 5.4 and 5.5 are also spacelike. So we have
two different Bäcklund transformations on spacelike Razzaboni surfaces.

Similar to Theorem 3.15, the reciprocal transformation in Theorem 4.2 and
Bäcklund transformation in Theorem 4.3 commute, provided the associated
functions φ and φ∗ satisfy

(4.13) φ∗ = 2 arctanh

(

1 + sin(λ + σ)

sinλ+ cosσ
tanh

φ

2

)

.

5. Spacelike Bertrand curves with spacelike principal normal

In this section, we consider the case that the parent Bertrand curve is space-
like with spacelike principal normal. Just as Section 4, we list the main results
but omit all the proofs.

Theorem 5.1. Let C be a non-planar spacelike curve with spacelike principal

normal in E2,1. Then C is a Bertrand curve if and only if there exist constants

A, B(6= 0) such that its curvature κ and torsion τ satisfy a linear relation

(5.1) Aκ+Bτ = 1.

Theorem 5.2. Let C be a spacelike curve with spacelike principal normal, C∗

be its Bertrand mate. Then the orthonormal triad (t∗,n∗,b∗) of C∗ is related

to that of C by

(5.2) t∗ =
Bt+Ab

D
, n∗ = n, b∗ = δ

At+Bb

D
,

where δ = 1 if B2 > A2, δ = −1 if B2 < A2, and D =
√

|B2 −A2|. The

curvature, torsion and arc length of C∗ are given by

(5.3) κ∗ =
Bκ+Aτ

δ(B2 −A2)τ
, τ∗ =

1

δ(B2 −A2)τ
, ds∗ = Dτds.

Note that the curvature κ∗ and torsion τ∗ of C∗ satisfy

(5.4) A∗κ∗ +B∗τ∗ = 1,

where A∗ = −δA, B∗ = δB.
Let the curve C move along its binormal vector b, i.e., rt = gb. Then the

surface Σ swept out by the moving curve has its first fundamental form

(5.5) dr2 = ds2 − g2dt2.

The compatibility of rst = rts yields

α = τg, β = gs,

and (t,n,b)st = (t,n,b)ts yield that κ, τ, g, γ satisfy the system

(5.6) gss = κγ − τ2g, κt = τsg + 2τgs, τt = γs + κgs,



392 C. XU, X. CAO, AND P. ZHU

where α, β, γ satisfy (3.10). Then we have:

Theorem 5.3. The nonlinear system (5.1) and (5.6) are invariant under the

reciprocal transformation

ds∗ =
√

|B2 −A2|τds− δ
A(Bτg + g +Aγ)
√

|B2 −A2|
dt, dt∗ = dt,

κ∗ =
Bκ+Aτ

δ(B2 −A2)τ
, τ∗ =

1

δ(B2 −A2)τ
, A∗ = −δA,

B∗ = δB, g∗ =
Bg +ABγ +A2τg
√

|B2 −A2|
,

γ∗ = −
δ

√

|B2 −A2|
[Agτ +Bγ +

A(Bτg + g +Aγ)

(B2 −A2)τ
],(5.7)

where δ is given in Theorem 5.2.

If taking A = a sinhσ,B = a coshσ, then (5.1) reduces to

(5.8) κ sinhσ + τ coshσ =
1

a
.

We have:

Theorem 5.4. Let Σ : r = r(s, t) be a Razzaboni surface parametrized in terms

of geodesic coordinate s, t. Then for any non-zero constant λ,

(5.9) r′ = r+ a sinhλ(coshσ sinφt+ cosφn+ sinhσ sinφb)

gives another Razzaboni surfaces Σ′(λ), where the function φ is a solution of

the integrable system

φs =
sinhλ

a(coshσ + coshλ)
cosφ+ κ coshσ + τ sinhσ

−
sinhσ

a(coshσ + coshλ)
,(5.10)

φt =
a sinhλ(coshλ+ coshσ)(coshσγ + sinhσgτ) + sinhλ sinσg

a coshλ(coshσ + coshλ)
cosφ

+ gs tanhλ sinhφ+ sinhσγ + coshσgτ

+
1 + coshλ coshσ

a coshλ(coshσ + coshλ)
g.(5.11)

The Bäcklund transformation Σ 7→ Σ′ obeys the constant length property, i.e.,

the distance between corresponding points on Σ and Σ′ only depends on the

Bäcklund parameter λ.

If taking A = a coshσ, then (5.1) reduces to

(5.12) κ coshσ + τ sinhσ =
1

a
.

We have:
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Theorem 5.5. Let Σ : r = r(s, t) be a Razzaboni surface parametrized in terms

of geodesic coordinate s, t. Then for any constant λ,

(5.13) r′ = r+ a coshλ(sinhσ sinhφt+ coshφn+ coshσ sinhφb)

gives another Razzaboni surface Σ′(λ), where the function φ is a solution of the

integrable system

φs =−
coshλ

a(sinhσ + sinhλ)
coshφ− κ sinhσ − τ coshσ

(5.14)

+
coshσ

a(sinhσ + sinhλ)
,

φt =−
a coshλ(sinhλ+ sinhσ)(sinh σγ + coshσgτ) + coshλ coshσg

a sinhλ(sinh σ + sinhλ)
coshφ

(5.15)

+ gs cothλ sinh φ− coshσγ − sinhσgτ

+
1− sinhλ sinhσ

a sinhλ(sinh σ + sinhλ)
g.

The Bäcklund transformation Σ 7→ Σ′ obeys the constant length property, i.e.,

the distance between corresponding points on Σ and Σ′ only depends on the

Bäcklund parameter λ.

Remark 5.6. For A = a sinhσ, B = a coshσ, the parent Bertrand curve C is
spacelike with spacelike principal normal. Analogous to Theorems 3.6 and 3.8,
one can obtain 〈t′, t′〉 = 1, 〈b′,b′〉 = −1. So all the Bertrand curves C′(λ)
in Theorem 5.4 are spacelike with spacelike principal normal. However, for
A = a coshσ, B = a sinhσ, the parent Bertrand curve C is spacelike with
spacelike principal normal, we have 〈t′, t′〉 = −1. So all the Bertrand curves
C′(λ) in Theorem 5.5 are timelike.

Remark 5.7. Since the parent Bertrand curve C is spacelike with spacelike
principal normal, the Razzaboni surfaces Σ in Theorems 5.4 and 5.5 are time-
like. Analogous to Theorems 3.8 and 3.11, 〈N′,N′〉 = 〈n′,n′〉 = 1, i.e., the
Razzaboni surfaces Σ′(λ) in Theorems 5.4 and 5.5 are also timelike. So we
have two different Bäcklund transformations on timelike Razzaboni surfaces.

For the case A = a sinhσ,B = a coshσ, similar to Theorem 3.15, the recip-
rocal transformation in Theorem 5.3 and Bäcklund transformation in Theorem
5.4 commute, provided the associated functions φ and φ∗ satisfy

(5.16) φ∗ = 2 arctan

(

1 + cosh(λ− σ)

coshλ+ coshσ
tan

φ

2

)

.
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[3] N. Ekmekci and K. İlarslan, On Bertrand curves and their characterization, Differ.

Geom. Dyn. Syst. 3 (2001), no. 2, 17–24.
[4] S. Izumiya and N. Takeuchi, Generic properties of helices and Bertrand curves, J. Geom.

74 (2002), no. 1-2, 97–109.
[5] S. Izumiya and A. Takiyama, A time-like surface in Minkowski 33-space which contains

pseudocircles, Proc. Edinburgh Math. Soc. (2) 40 (1997), no. 1, 127–136.
[6] M. Külahci and M. Ergüt, Bertrand curves of AW(k)-type in Lorentzian space, Nonlinear

Anal. 70 (2009), no. 4, 1725–1731.
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