
Bull. Korean Math. Soc. 52 (2015), No. 2, pp. 367–376
http://dx.doi.org/10.4134/BKMS.2015.52.2.367

FINITE p-GROUPS WHOSE NON-CENTRAL CYCLIC

SUBGROUPS HAVE CYCLIC QUOTIENT GROUPS IN

THEIR CENTRALIZERS

Lihua Zhang, Jiao Wang, and Haipeng Qu

Abstract. In this paper, we classified finite p-groups G such that

CG(x)/〈x〉

is cyclic for all non-central elements x ∈ G. This solved a problem pro-
posed By Y. Berkovoch.

1. Introduction

If G is a finite group, then 1 ≤ 〈x〉 ≤ CG(x) ≤ G for all elements x ∈ G.
In particular, G is abelian if and only if |G : CG(x)| = 1 for all x ∈ G.
Moreover, K. Ishikawa [5] classified finite p-groups with |G : CG(x)| ≤ p2.
Along another line, X. H. Li and J. Q. Zhang [6] classified finite p-groups with
|CG(x) : 〈x〉| ≤ pk, where k = 1, 2 and p > 2. Y. Berkovich [1] proposed the
following:

Problem 116(ii). Classify the p-groups G such that CG(H)/H is cyclic for
all noncentral cyclic H < G.

In other words, Problem 116(ii) requires to classify finite p-groups G such
that CG(x)/〈x〉 is cyclic for all non-central elements x ∈ G.

For convenience, the groups in Problem 116(ii) are called P-groups. Let
S = {G

∣

∣ G is a P-group}. In this paper, S is determined, and hence the
Problem 116(ii) is solved.

2. Preliminaries

Assume G is a finite p-group. Let r(G) = max{logp|E|
∣

∣ E ≤ G and E is

elementary abelian} and rn(G) = max{logp|E|
∣

∣ E E G and E is elementary
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abelian}. r(G) is called the rank of G and rn(G) is called the normal rank of
G.

Let G be a finite p-group. We use Cpm , Cn
pm and H ∗K to denote the cyclic

group of order pm, the direct product of n cyclic groups of order pm, and a
central product of H and K, respectively. M <· G means M is a maximal
subgroup of G.

We use Mp(m,n) to denote the group

〈a, b
∣

∣ ap
m

= bp
n

= 1, ab = a1+pm−1

〉, where m ≥ 2,

and Mp(m,n, 1) to denote the group

〈a, b, c
∣

∣ ap
m

= bp
n

= cp = 1, [a, b] = c, [c, a] = [c, b] = 1〉,

where m ≥ n, and m+ n ≥ 3 if p = 2. For other notation and terminology the
reader is referred to [4].

A non-abelian group G is said to be minimal non-abelian if every proper
subgroup of G is abelian. A concept which is more general than that of minimal
non-abelian p-groups was introduced by Y. Berkovich and Z. Janko in [2]. For
a positive integer t, a finite p-group G is said to be an At-group if all subgroups
of index pt of G are abelian, and at least one subgroup of index pt−1 of G is not
abelian. Obviously, A1-groups are exactly the minimal non-abelian p-groups.

Lemma 2.1 ([7, Lemma 2.2]). Suppose that G is a finite nonabelian p-group.

Then the following conditions are equivalent.

(1) G is minimal nonabelian;
(2) d(G) = 2 and |G′| = p;
(3) d(G) = 2 and Φ(G) = Z(G).

Lemma 2.2 ([1, Proposition 72.1]). Assume G is a metacyclic p-group. Then

G is an At-group if and only if |G′| = pt.

Lemma 2.3. Assume G is a finite p-group and c(G) = 2. Then G′ is elemen-

tary abelian if and only if G/Z(G) is elementary abelian.

Proof. It follows from [ap, b] = 1 ⇐⇒ [a, b]p = 1 for all a, b ∈ G. �

Lemma 2.4 ([1, Section 1, Exercise 69(a)]). Assume G is a finite p-group. If

two distinct maximal subgroups of G are abelian, then |G′| ≤ p.

Lemma 2.5 ([1, Theorem 41.1]). If G is a minimal non-metacyclic 2-group,
then |G| ≤ 25.

Lemma 2.6 ([3, Theorem 4.1]). Assume G is a group of order pn with p > 2
and n ≥ 5. If rn(G) = 2, then G is one of the following groups.

(1) G is metacyclic;
(2) G ∼= Mp(1, 1, 1) ∗ Cpn−2 ;
(3) G is a 3-group of maximal class of order ≥ 35;

(4) G= 〈a, x, y
∣

∣ ap
n−2

= 1, xp = yp = 1, [a, x] = y, [x, y] = aip
n−3

, [y, a] = 1〉,
i = 1 or σ, where σ is a fixed square non-residue modulo p.
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Lemma 2.7 ([1, Theorem 9.10]). If a group G of order pm > p3 has a subgroup

M of order pm−1 of maximal class, then G is either of maximal class or G/G′ ∼=
C3

p .

Lemma 2.8 ([1, Section 9, Exercise 1(c)]). Assume G is a group of maximal

class and order pn. If p > 2 and n > 3, then G has no cyclic normal subgroups

of order p2.

Lemma 2.9 ([1, Section 9, Exercise 10]). Let G be a 3-group of maximal

class. Then the fundamental subgroup G1 of G is abelian or metacyclic minimal

nonabelian.

3. Some properties of P-groups

Lemma 3.1. If G is a P-group, then r(G) ≤ 2.

Proof. If not, then there exists A ≤ G and A ∼= C3
p . If A � Z(G), then

there exists x ∈ A \ Z(G). Since A is abelian, A ≤ CG(x). Since A/〈x〉 ∼= C2
p ,

CG(x)/〈x〉 is not cyclic. This contradicts hypothesis. If A ≤ Z(G), then
A〈x〉/〈x〉 ≤ CG(x)/〈x〉 for all x ∈ G \ Z(G). Since A〈x〉/〈x〉 ∼= A/A ∩ 〈x〉 ∼= C2

p

or C3
p , CG(x)/〈x〉 is not cyclic. This contradicts hypothesis again. �

Lemma 3.2. Assume G is a metacyclic nonabelian p-group and p > 2. Then

G is a P-group if and only if G is minimal nonabelian.

Proof. ⇐=: Let x ∈ G \ Z(G). By Lemma 2.1(3), Z(G) = Φ(G). Since
Φ(CG(x)) ≤ Φ(G), x /∈ Φ(CG(x)). Since G is metacyclic, CG(x) is metacyclic.
So d(CG(x)) ≤ 2. It follows that there exists y ∈ G such that CG(x) = 〈x, y〉.
Hence CG(x)/〈x〉 is cyclic. That is, G is a P-group.

=⇒: Since p > 2 and G is metacyclic, Ω1(G) ∼= C2
p . Let G = 〈a, b〉 and

H = 〈a〉Ω1(G), where 〈a〉⊳G. Then H ′ ≤ 〈a〉∩Ω1(G). In particular, |H ′| ≤ p.
Thus 〈ap〉Ω1(G) is abelian. Hence H ≤ CG(a

p). Since G is a P-group and
H/〈ap〉 = H/℧1(H) ∼= C2

p , we get a
p ∈ Z(G). Since p > 2 and G is metacyclic,

G is regular. Hence [a, b]p = 1 is equivalent to [ap, b] = 1. It follows that
|G′| = p. By Lemma 2.1(2), G is minimal nonabelian. �

It is easy to see that the argument in Lemma 3.2 is true for ordinary meta-
cyclic 2-groups. Thus we have:

Corollary 3.3. Assume G is an ordinary metacyclic 2-group. Then G is a

P-group if and only if G is minimal nonabelian.

Lemma 3.4. Assume G is a P-group and H is a nonabelian subgroup of G.

Then H is a P-group.

Proof. ∀x ∈ H \ Z(H), we have x /∈ Z(G). If not, x ∈ Z(G) ∩ H ≤ Z(H), a
contradiction. Thus x ∈ G \ Z(G). Since G is a P-group, CG(x)/〈x〉 is cyclic.
Since CH(x) ≤ CG(x), CH(x)/〈x〉 is cyclic. �
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4. P-groups of order odd

Theorem 4.1. Let p be an odd prime. Then G is a P-group if and only if G

is one of the following pairwise non-isomorphic groups.

(1) metacyclic minimal nonabelian p-groups of order pn, where n > 3;
(2) Mp(1, 1, 1);
(3) G = 〈a, b, c

∣

∣ a9 = c3 = 1, b3 = a3, [a, b] = c, [c, a] = 1, [c, b] = a−3〉;
(4) G ∼= Mp(1, 1, 1) ∗ Cpn−2 , where n > 2;

(5) G= 〈a, x, y
∣

∣ ap
n−2

= 1, xp = yp = 1, [a, x] = y, [x, y] = aip
n−3

, [y, a] = 1〉,
i = 1 or σ, where σ is a fixed square non-residue modulo p.

Proof. If |G| ≤ p4, then, the conclusion holds by checking the list of groups of
order p3 and p4. Assume |G| ≥ p5. By Lemma 3.1, r(G) ≤ 2. Thus rn(G) ≤ 2.
If rn(G) = 1, then G is cyclic, a contradiction. So rn(G) = 2. Thus G is one
of the groups listed in Lemma 2.6. We discuss case by case.

If G is the group (1) in Lemma 2.6, then, by Lemma 3.2, G is the group (1).
If G is the group (2) in Lemma 2.6, then Z(G) is a cyclic subgroup of index

p2. Let g ∈ G \ Z(G). Then CG(g) < G. Obviously, CG(g) ≥ 〈g〉Z(G). Thus
CG(g) = 〈g〉Z(G). Hence CG(g)/〈g〉 ∼= Z(G)/Z(G) ∩ 〈g〉 is cyclic. That is, G
is a P-group. This is the group (4).

If G is the group (3) in Lemma 2.6, then, by Lemma 2.9, G1 is abelian or
metacyclic non-abelian. Since |G| ≥ 35, |G1| ≥ 34. It follows that there exists
a subgroup H E G such that |H | = 34 with d(H) ≥ 2 and H is abelian or
metacyclic non-abelian. By Lemma 3.1, d(H) = 2. By Lemma 2.8, ℧1(H) ≇
C9. Hence H ∼= C2

9 or M3(2, 2). Thus ℧1(H) ≤ Z(H) and ℧1(H) ∼= C2
3 . Since

G is of maximal class, |Z(G)| = 3. So there exists x ∈ ℧1(H) \ Z(G). Since H

is not cyclic, H/〈x〉 is not cyclic. It follows from H ≤ CG(x) that CG(x)/〈x〉
is not cyclic. That means G is not a P-group.

If G is the group (4) in Lemma 2.6, then, by calculations, we get Z(G) = 〈ap〉
is a subgroup of index p3 and 〈a, y〉 is a abelian maximal subgroup. Since
|G′| = p2, G has a unique abelian maximal subgroup by Lemma 2.4. Let
g ∈ G \ Z(G). Then 〈ap, g〉 ≤ CG(g) < G. If CG(g) = 〈ap, g〉, then CG(g)/〈g〉
is cyclic. If CG(g) > 〈ap, g〉, then CG(g) ⋖ G. Since 〈ap, g〉 ≤ Z(CG(g)) and
|CG(g)/〈ap, g〉| = p, CG(g) is abelian. Thus CG(g) = 〈a, y〉 and g = aiyj ,
where (i, p) = 1 or (j, p) = 1. It follows that CG(g)/〈g〉 is cyclic. Hence G is a
P-group. This is the group (5). �

5. P-groups of order even

Lemma 5.1. Assume G is a P-group of order 2n and n ≥ 5, M is a maximal

subgroup of G. If M is of maximal class, then G is of maximal class.

Proof. Otherwise, by Lemma 2.7, G/G′ ∼= C3
p . It follows that

℧1(G) = G′ = M ′ = ℧1(M)
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and hence exp(G) = exp(M). Since M is of maximal class, M has a maximal
subgroup H which is cyclic by the classification of 2-groups of maximal class.
Let K = Ω2(H). Then K ∼= C4 and K char H char M EG. Hence K EG. By
N/C theorem,

G/CG(K) . Aut (K) ∼= C2.

SinceM is of maximal class, |Z(M)| = 2. HenceK � Z(M). ThusG/CG(K) ∼=
C2. Since G is not of maximal class, CG(K) is not cyclic. Since n ≥ 5,

K ≤ ℧1(M
′) ≤ Φ(CG(K)).

It follows that CG(K)/K is not cyclic. This contradicts that G is a P-group.
�

Lemma 5.2. Assume G is a P-group of order 2n and n ≥ 6, M is a maximal

subgroup of G and M = 〈a, b, c
∣

∣ a2
n−4

= b2
2

= 1, c2 = a2b2, [a, b] = b2, [c, a] =
[c, b] = 1〉. Then

(1) Z(M) = 〈a2, c〉 = 〈b2, c〉 ∼= C2 × C2n−4 and Ω1(M) = 〈a2
n−5

, b2〉 ∼= C2
2 ;

(2) Φ(G) = ℧1(G) ≤ Z(M) ≤ Z(G);
(3) G′ ≤ Ω1(Z(M)) = Ω1(M);
(4) M = Ωn−4(G), in particular, o(x) = 2n−3 for all x ∈ G \M .

Proof. (1) Obviously.
(2) Firstly, we prove Z(M) ≤ Z(G). If a2 /∈ Z(G), then CG(a

2)/〈a2〉 is
cyclic since G is a P-group. Since CG(a

2) ≥ M , M/〈a2〉 is cyclic. This is a
contradiction. Thus a2 ∈ Z(G). Similarly, c ∈ Z(G).

Secondly, we prove x2 ∈ Z(M) for all x ∈ G. Since x2 ∈ M , it suffices
to prove x2 ∈ Z(G). If not, then, since CG(x

2)/〈x2〉 ≥ Z(M)〈x〉/〈x2〉 and G

is a P-group, Z(M)〈x〉/〈x2〉 is cyclic. Since 〈x2〉 ≤ Φ(Z(M)〈x〉), Z(M)〈x〉 is
cyclic. In particular, Z(M) is cyclic. This is a contradiction.

(3) By (2), G/Z(G) is elementary abelian. By Lemma 2.3, G′ is elementary
abelian. In particular, G′ ≤ Ω1(Z(M)) = Ω1(M).

(4) If not, then Ωn−4(G) = G. By (2) and (3), G is 4-abelian. Since n−4 ≥ 2,
exp(G) = exp(Ωn−4(G)) = 2n−4. Hence exp(℧1(G)) = 2n−5. It follows that

Φ(G) = ℧1(G) ≤ Ωn−5(Z(M)) = 〈b2, c2〉 = Φ(M).

Thus d(G) = d(M) + 1 = 4.
Take x ∈ G \M . Then 〈a, b, c, x〉 = G. Since

G′ ≤ Ω1(M) = 〈a2
n−5

, b2〉,

[a, x] ∈ 〈a2
n−5

〉 or [a, bx] ∈ 〈a2
n−5

〉. Without loss of generality, we can assume

[a, x] ∈ 〈a2
n−5

〉. If [a, x] = 1, then

CG(a)/(〈a〉Φ(G)) ≥ 〈c̄, x̄〉 ∼= C2
2 .

Hence CG(a)/〈a〉 is not cyclic. This is a contradiction. So [a, x] = a2
n−5

.
Note that c ∈ Z(G) and [a, x] = [a, xci], where i is an integer. Since

x2 ∈ Φ(G) = 〈b2, c2〉,



372 L. ZHANG, J. WANG, AND H. QU

(xci)2 = c2 or (xci)2 = c2b2 = a2 for a suitable i. Without loss of generality,
we assume x2 = c2 or a2. If x2 = c2, then o(xc−1) = 2. If x2 = a2, then

o(xa−1+2n−6

) = 2. In either case, there is an involution y ∈ G \ M . Hence
〈y〉Ω1(M) ∼= C3

2 , This contradicts Lemma 3.1. �

Lemma 5.3. Assume G and M are the same as Lemma 5.2. Then G is

isomorphic to one of the following non-isomorphic groups:

(1) 〈a, b, c
∣

∣ a2
n−3

= b2
2

= 1, c2 = a2b2, [a, b] = b2, [c, a] = [c, b] = 1〉;

(2) 〈a, b, c
∣

∣ a2
n−3

= b2
2

= 1, c2 = a2b2, [a, b] = b2, [c, a] = a2
n−4

, [c, b] = 1〉.

Proof. By Lemma 5.2(4), exp(G) = 2n−3 and o(x) = 2n−3 for all x ∈ G \M .
By Lemma 5.2(2), x2 ∈ Z(M) = 〈b2, c〉. We can assume x2 = c or x2 = cb2.
By Lemma 5.2(3), G′ ∼= C2 or G′ ∼= C2

2 .
If G′ ∼= C2, then G′ = M ′ = 〈b2〉. If [b, x] = 1 and [a, x] = 1, then let

a1 = ax−1. Thus

a2
n−3

1 = 1, [a1, b] = [ax−1, b] = [a, b] = b2 and a21b
2 = x2.

Hence

G = 〈a1, b, x
∣

∣ a2
n−3

1 = b2
2

= 1, x2 = a21b
2, [a1, b] = b2, [x, a1] = [x, b] = 1〉.

Here G is isomorphic to the group (1). If [b, x] = 1 and [a, x] = b2, then let
x1 = bx. Thus [b, x1] = 1 and [a, x1] = 1. If [b, x] = b2, then let x1 = ax. Thus
[b, x1] = 1. In the two cases, we also get G is isomorphic to the group (1).

If G′ ∼= C2
2 , then G′ = Ω1(M). We consider the possible cases of [b, x].

Case 1. [b, x] = 1

Then [a, x] = a2
n−5

or [a, x] = a2
n−5

b2.

If [a, x] = a2
n−5

, then let a1 = ax−1+2n−5

. Thus

a2
n−3

1 = 1, x2 = a21b
2, [a1, b] = [ax−1+2n−5

, b] = [a, b] = b2,

[a1, x] = [ax−1+2n−5

, x] = [a, x] = a2
n−5

= a2
n−4

1 .

Thus G = 〈a, b, x〉 = 〈a1, b, x〉 with defining relations as above. Here G is
isomorphic to the group (2).

If [a, x] = a2
n−5

b2, then let x1 = bx. Thus [b, x1] = 1 and [a, x1] = a2
n−5

.

We get the group (2) as that of [a, x] = a2
n−5

.

Case 2. [b, x] = b2

Let x1 = ax. Then [b, x1] = 1. This is reduced to Case 1.

Case 3. [b, x] = a2
n−5

If [a, x] = 1, then let a1 = ax−1, b1 = bx2n−5

and x1 = x1+2n−5

. By
calculations, we get

o(a1) = 2n−3, o(b1) = 22, [a1, b1] = b2x2n−4

= b21,

[a1, x1] = 1, [b1, x1] = x2n−4

1 , a21b
2
1 = x2

1.
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Thus G = 〈a, b, x〉 = 〈a1, b1, x1〉 with defining relations as above. By a simple
checking we get G is isomorphic to the group (2).

If [a, x] = b2, then let a1 = a and x1 = bx. If [a, x] = a2
n−5

, then let a1 = ab

and x1 = x. If [a, x] = a2
n−5

b2, then let a1 = ab and x1 = bx. In this three

cases, we get [a1, x1] = 1 and [b, x1] = a2
n−5

1 . This is reduced to the case of
[a, x] = 1.

Case 4. [b, x] = a2
n−5

b2

Let x1 = ax. Then [b, x1] = a2
n−5

. This is reduced to Case 3. �

Lemma 5.4. Assume G is a P-group of order 2n and n ≥ 6, M is a maximal

subgroup of G and M = 〈a, b, c
∣

∣ a2
n−4

= b2
2

= 1, c2 = a2b2, [a, b] = b2, [c, a] =

a2
n−5

, [c, b] = 1〉. Then n = 6 and G ∼= 〈a, b, c, d
∣

∣ a4 = b4 = 1, c2 = a2b2, b2 =

d2, [a, b] = b2, [a, c] = a2, [a, d] = 1, [b, c] = 1, [b, d] = a2, [c, d] = c2〉.

Proof. By a similar argument as that of Lemma 5.2, we get

(1) Φ(M) = Z(M) = 〈a2, b2〉 ∼= C2×C2n−5 and Ω1(M) = M ′ = 〈a2
n−5

, b2〉
∼= C2

2 ;
(2) Φ(G) = Φ(M) = Z(M) ≤ Z(G), in particular, d(G) = 4 and exp(G) =

2n−4;
(3) G′ = Ω1(Z(M)) = Ω1(M) = M ′;
(4) G \M has no element of order 2.

Noting [a,M ] = M ′ = G′, we can take a suitable d ∈ G \ M such that
[a, d] = 1. Then G = 〈a, b, c, d〉. Assume d2 = a2ib2j , where i and j are
integers. Replacing d by da−i, we can assume d2 = b2j . By (4), j 6= 0. Hence
d2 = b2.

If [b, d] ∈ 〈b2〉, then [b, d] = 1 or [b, ad] = 1. Hence |CG(b)/(〈b〉Φ(G))| ≥ 4.

This contradicts that G is a P-group. Thus [b, d] = a2
n−5

or a2
n−5

b2. Similarly,

[c, d] = b2 or b2a2
n−5

.

If n ≥ 7, then a2
n−6

∈ ℧1(G) ≤ Z(G). Hence (bda2
n−6

)2 = (bd)2a2
n−5

=

[b, d]a2
n−5

. By (4), [b, d]a2
n−5

6= 1. Thus [b, d] = b2a2
n−5

. It follows that

(abcd)2 = b2[c, d]. By (4), b2[c, d] 6= 1. Thus [c, d] = b2a2
n−5

= [b, d]. So
[bc, d] = 1. It follows that |CG(d)/(〈d〉Φ(G))| ≥ 4. This contradicts that G is a
P-group. Hence n = 6.

By (4), 1 6= (abd)2 = a2b2[b, d]. Hence [b, d] = a2. By (4) again, 1 6= (bcd)2 =
b2[c, d]. Hence [c, d] = b2a2 = c2, and we get the desired group G. �

Lemma 5.5. Assume G is a P-group of order 2n and n ≥ 5, M is a maximal

subgroup of G and M = 〈a, b, c
∣

∣ a2
n−3

= b2 = c2 = 1, [c, b] = a2
n−4

, [b, a] =
[c, a] = 1〉 ∼= D8 ∗ C2n−3 . Then G ∼= D8 ∗ C2n−2 .

Proof. By a similar and more simple argument as that of Lemma 5.2, we get

(1) Z(M) = 〈a〉 ∼= C2n−3 and Ω1(Z(M)) = 〈a2
n−4

〉;
(2) Φ(G) = ℧1(G) ≤ Z(M) ≤ Z(G), in particular, exp(G) ≤ 2n−2;
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(3) G′ = Ω1(Z(M)) = M ′;
(4) M = Ωn−3(G), in particular, o(x) = 2n−2 for all x ∈ G \M .
By (4), we can assume x2 = a. We consider [b, x] and [c, x]. If [b, x] = 1 and

[c, x] = 1, then G = 〈b, c〉 ∗ 〈x〉 ∼= D8 ∗ C2n−2 . If [b, x] = 1 and [c, x] = a2
n−4

,
then, by letting x1 = bx, we get [b, x1] = 1 and [c, x1] = [c, bx] = 1. Thus

G = 〈b, c〉 ∗ 〈x1〉 ∼= D8 ∗ C2n−2 . If [b, x] = a2
n−4

, then, by letting x1 = cx, we
get [b, x1] = 1. This is reduced to that of [b, x] = 1. �

Lemma 5.6. Assume G is a P-group of order 26. Then G has no subgroup

M ∼= 〈a, b, c
∣

∣ a4 = c4 = 1, a2 = b2, [a, b] = a2, [c, a] = c2, [c, b] = 1〉.

Proof. Otherwise, by a similar argument as that of Lemma 5.2, we get
(1) Φ(M) = Z(M) = Ω1(M) = M ′ = 〈a2, c2〉 ∼= C2

2 ;
(2) Φ(G) = Φ(M) = Z(M) ≤ Z(G), in particular, d(G) = 4 and exp(G) = 4;
(3) G′ = Ω1(Z(M)) = Ω1(M) = M ′;
(4) G \M has no element of order 2.
Notice that [a,M ] = M ′ = G′. We can take a suitable x ∈ G \M such that

[a, x] = 1. Without loss of generality, we can assume x2 = c2. By a similar
argument as that of Lemma 5.4, we have [b, x] = c2 or a2c2 and [c, x] = a2 or
a2c2.

By (4), 1 6= (abx)2 = a2c2[b, x] and 1 6= (acx)2 = a2c2[c, x]. Hence [b, x] = c2

and [c, x] = a2. It follows that (abcx)2 = 1. This contradicts (4). �

Lemma 5.7. Assume G is a P-group of order 27. Then G has no subgroup

M ∼= 〈a, b, c, d
∣

∣ a4 = b4 = 1, c2 = a2b2, b2 = d2, [a, b] = b2, [a, c] = a2, [a, d] =

1, [b, c] = 1, [b, d] = a2, [c, d] = c2〉.

Proof. Otherwise, by a similar argument as that of Lemma 5.2, we get
(1) Φ(M) = Z(M) = Ω1(M) = M ′ = 〈a2, b2〉 ∼= C2

2 ;
(2) Φ(G) = Φ(M) = Z(M) ≤ Z(G), in particular, d(G) = 5 and exp(G) = 4;
(3) G′ = Ω1(Z(M)) = Ω1(M) = M ′;
Notice that [a,M ] = M ′ = G′. We can take a suitable x ∈ G \M such that

[a, x] = 1. Hence CG(a)/(〈a〉Φ(G)) ≥ 〈d̄, x̄〉 ∼= C2
2 . This contradicts that G is

a P-group. �

Theorem 5.8. Assume G is a group of order 2n. Then G is a P-group if and

only if G is one of the following pairwise non-isomorphic groups.

(1) metacyclic minimal nonabelian p-groups;
(2) 2-groups of maximal class;
(3) D8 ∗ C2n−2 ;

(4) 〈a, b, c
∣

∣ a2
n−3

= b2
2

= 1, c2 = a2b2, [a, b] = b2, [c, a] = [c, b] = 1〉;

(5) 〈a, b, c
∣

∣ a2
n−3

= b2
2

= 1, c2 = a2b2, [a, b] = b2, [c, a] = a2
n−4

, [c, b] = 1〉;
(6) Q8 × C2;
(7) 〈a, b, c

∣

∣ a4 = c4 = 1, a2 = b2, [a, b] = a2, [c, a] = c2, [c, b] = 1〉;
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(8) 〈a, b, c, d
∣

∣ a4 = b4 = 1, c2 = a2b2, b2 = d2, [a, b] = b2, [a, c] = a2, [a, d] =

1, [b, c] = 1, [b, d] = a2, [c, d] = c2〉.

Proof. If n ≤ 5, then, by classification of 2-groups of order ≤ 25, the conclusion
holds. In following assume n ≥ 6 and G is a P-group.

By induction hypothesis, each maximal subgroup of G is abelian or isomor-
phic to one of the groups (1)–(5), (7) and (8). If G has a maximal subgroup
which is isomorphic to one of the groups (2)–(5), (7) and (8), then G is isomor-
phic to one of the groups (2)–(5) and (8) by Lemma 5.1, Lemmas 5.3, 5.4, 5.5,
5.6 and 5.7.

Assume every maximal subgroup of G is abelian or metacyclic minimal non-
abelian. By Lemma 3.1, every maximal subgroup of G is metacyclic. If G is
not metacylcic, then G is minimal non-metacyclic. It follows that |G| ≤ 25 by
Lemma 2.5. This contradicts |G| ≥ 26. Thus G is metacyclic.

If G is minimal non-abelian, then we get the group (1).
If G is not minimal nonabelian, then G is a metacyclic A2-group. By

Lemma 2.2, |G′| = 4. Assume G = 〈a, b〉, where G′ < 〈a〉. Then o(a) ≥ 8
and at ∈ Z(G) if and only if 4|t. Hence a2 /∈ Z(G). Since |G| ≥ 26 and
|G′| = 4, G has no cyclic maximal subgroup. It follows that CG(a

2) = 〈a, b2〉
is not cyclic. Notice that 〈a2〉 ≤ ℧1(CG(a

2)). CG(a
2)/〈a2〉 is not cyclic. This

contradicts G is a P-group.
It is easy to see that those groups in the theorem are pairwise non-isomorphic.

In following we prove those groups in the theorem are P-groups.
If G is the group (1), then G is a P-group by Corollary 3.3.
If G is the group (2), then G has a cyclic subgroup of index 2 and G is

metacyclic by the classification of 2-groups of maximal class. Let 〈a〉 be a

cyclic subgroup of index 2 of G. Then Φ(G) = 〈a2〉 and Z(G) = 〈a2
n−2

〉.
Let x ∈ G \ Z(G). If x /∈ Φ(G), then x /∈ Φ(CG(x)). Since G is metacyclic,
CG(x) is metacyclic. Hence d(CG(x)) ≤ 2. Thus there exists y ∈ G such that
CG(x) = 〈x, y〉. It follows that CG(x)/〈x〉 = 〈ȳ〉 is cyclic. If x ∈ Φ(G) \ Z(G),
then CG(x) = 〈a〉. Obviously, CG(x)/〈x〉 is cyclic. So G is a P-group.

If G is one of the groups (3)–(7), then |G : Z(G)| ≤ 8. It follows that
|G : 〈x, Z(G)〉| ≤ 4 for all x ∈ G \ Z(G). Notice that 〈x, Z(G)〉 ≤ Z(CG(x))
and CG(x) < G. We have |CG(x)/Z(CG(x))| ≤ 2. Hence CG(x) is abelian. It
is easy to check r(G) = 2. Hence d(CG(x)) ≤ 2. Thus there exists y ∈ G such
that CG(x) = 〈x, y〉. It follows that CG(x)/〈x〉 = 〈ȳ〉 is cyclic.

If G is the group (8), then Z(G) = Φ(G) = Ω1(G) ∼= C2
2 . It is easy to check

Z(M) = Z(G) for all subgroups M of order 32. Since Z(CG(x)) ≥ 〈x, Z(G)〉
for all x ∈ G \ M , Z(CG(x)) > Z(G). Thus |CG(x)| ≤ 16. It follows that
CG(x) is abelian and hence d(CG(x)) ≤ 2. Thus there exists y ∈ G such that
CG(x) = 〈x, y〉. It follows that CG(x)/〈x〉 = 〈ȳ〉 is cyclic. �
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