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LIE IDEALS IN TRIDIAGONAL ALGEBRA ALGL∞

Joo Ho Kang

Abstract. We give examples of Lie ideals in a tridiagonal algebra AlgL∞

and study some properties of Lie ideals in AlgL∞. We also investigate
relationships between Lie ideals in AlgL∞. Let k be a fixed natural
number. Let A be a linear manifold in AlgL∞ such that T(2k−1,2k) = 0
for all T ∈ A. Then A is a Lie ideal if and only if T(2k−1,2k−1) = T(2k,2k)

for all T ∈ A.

1. Introduction

Let H be an infinite-dimensional separable Hilbert space with a fixed or-
thonormal base {e1, e2, . . .} and let B(H) be the algebra of all bounded oper-
ators on H. If x1, x2, . . . , xk are vectors in H, we denote by [x1, x2, . . . , xk]
the closed subspace spanned by the vectors x1, x2, . . . , xk. A subspace lat-
tice L is a strongly closed lattice of orthogonal projections acting on H. We
denote by L∞ the subspace lattice generated by the subspaces [e1], [e3], . . . ,
[e2n−1], . . . , [e1, e2, e3], [e3, e4, e5], . . . , [e2n−3, e2n−2, e2n−1], . . .. By AlgL∞, we
mean the algebra of bounded operators which leave invariant all of the sub-
spaces in L∞. It is easy to see that all such operators have the matrix form
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where all non-starred entries are zero.
The algebra AlgL∞ becomes a Lie algebra under the Lie product

[A,B] = AB −BA.
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Let A be a subalgebra of AlgL∞. We say that A is a left ideal of AlgL∞ if
AT ∈ A for all A in AlgL∞ and T in A. A is called a right ideal of AlgL∞ if
TA ∈ A for all A in AlgL∞ and T in A. A is said to be an ideal of AlgL∞

if A is a left ideal of AlgL∞ and a right ideal of AlgL∞. A linear manifold
A in AlgL∞ is called a Lie ideal in AlgL∞ if [A,X ] ∈ A for A in AlgL∞ and
X ∈ A. In this paper, let I be the identity operator on H. Let C be the set of
all complex numbers and N = {1, 2, . . .}.

2. Examples of Lie ideals in AlgL∞

If we know the following facts, then we can easily prove the following exam-
ples of Lie ideals in AlgL∞.

Let A = (aij) and T = (tij) be operators in AlgL∞. Then

(α) the (k, k)-entry of AT − TA is 0 for all k = 1, 2, . . ..
(β) the (2k − 1, 2k)-entry of AT − TA is a2k−1 2k(t2k 2k − t2k−1 2k−1) +

t2k−1 2k(a2k−1 2k−1 − a2k 2k) for all k = 1, 2, . . ..
(γ) the (2k + 1, 2k)-entry of AT − TA is a2k+1 2k(t2k 2k − t2k+1 2k+1) +

t2k+1 2k(a2k+1 2k+1 − a2k 2k) for all k = 1, 2, . . ..

We denote T(i,j) or ti j by the (i, j)-component of an operator T in AlgL∞

and use the following notations in this paper:
Let n and l be fixed natural numbers (n > 1, l > 1). Let Γ = {k1, k2, . . . , kn,

j1, j2, . . . , jl}, Γn = {k1, k2, . . . , kn} and Υl = {j1, j2, . . . , jl} be finite subsets
of N. Let Ω = {k1, k2, . . . , j1, j2, . . .}, Ω1 = {k1, k2, . . .} and Ω2 = {j1, j2, . . .}
be infinite subsets of N.

Example 1. Let A0 = {T ∈ AlgL∞ |T(k,k) = 0, k ∈ N}. Then A0 is a Lie
ideal.

Example 2. Let I be the identity operator on H and let A1 = {αI + T |α ∈
C, T ∈ A0}. Then A1 is a Lie ideal.

It is easy to show that an intersection of Lie ideals in AlgL∞ is a Lie ideal
in AlgL∞.

Example 3. Let k and j be fixed natural numbers.

1) A0,2k−1 = {T ∈ A0 |T(2k−1,2k) = 0}. Then A0,2k−1 is a Lie ideal.
2) A0,2j+1 = {T ∈ A0 |T(2j+1,2j) = 0}. Then A0,2j+1 is a Lie ideal.

We denote Lie ideals that are obtained by intersections of Lie ideals A0,2ki−1

and A0,2jp+1 as follows:

A0,Γn
= ∩n

i=1A0,2ki−1, A0,Υl
= ∩l

p=1A0,2jp+1, A0,Ω1 = ∩∞

i=1A0,2ki−1,

A0,Ω2 = ∩∞

p=1A0,2jp+1, A0,Γ = A0,Γn
∩A0,Υl

, and A0,Ω = A0,Ω1 ∩ A0,Ω2 .

Example 4. Let k and j be fixed natural numbers.

1) A1,2k−1 = {T ∈ A1 |T(2k−1,2k) = 0}. Then A1,2k−1 is a Lie ideal.
2) A1,2j+1 = {T ∈ A1 |T(2j+1,2j) = 0}. Then A1,2j+1 is a Lie ideal.
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We denote Lie ideals that are obtained by intersections of Lie ideals A1,2ki−1

and A1,2jp+1 as follows:

A1,Γn
= ∩n

i=1A1,2ki−1, A1,Υl
= ∩l

p=1A1,2jp+1, A1,Ω1 = ∩∞

i=1A1,2ki−1,

A1,Ω2 = ∩∞

p=1A1,2jp+1, A1,Γ = A1,Γn
∩A1,Υl

, and A1,Ω = A1,Ω1 ∩ A1,Ω2 .

Example 5. Let k and j be fixed natural numbers.

1) Let A2,2k−1 = {T ∈ AlgL∞ |T(2k−1,2k−1) = T(2k,2k) and T(2k−1,2k) =
0}. Then A2,2k−1 is a Lie ideal.

2) Let A2,2j+1 = {T ∈ AlgL∞ |T(2j,2j) = T(2j+1,2j+1) and T(2j+1,2j) = 0}.
Then A2,2j+1 is a Lie ideal.

We denote A2,2k−1 ∩ A2,2j+1 by A2,2k−1,2j+1.

Proof. 1) Let A be an operator in AlgA∞ and T be an operator in A2,2k−1.
Since the (2k − 1, 2k)-entry of AT and the (2k − 1, 2k)-entry of TA are

a2k−1 2k−1t2k−1 2k + a2k−1 2kt2k 2k = a2k−1 2kt2k 2k and

t2k−1 2k−1a2k−1 2k + t2k−1 2ka2k 2k = t2k−1 2k−1a2k−1 2k.

So AT and TA are not in A2,2k−1. Hence A2,2k−1 is not a left ideal and
not a right ideal. Since T(2k−1,2k−1) = T(2k,2k), the (2k − 1, 2k)-component of
AT − TA is zero. Hence AT − TA is in A2,2k−1. So A2,2k−1 is a Lie ideal.

2) Let A be an operator in AlgA∞ and T be an operator in A2,2j+1. Since
the (2j + 1, 2j)-entry of AT and the (2j + 1, 2j)-entry of TA are

a2j+1 2jt2j 2j + a2j+1 2j+1t2j+1 2j = a2j+1 2jt2j 2j and

t2j+1 2ja2j 2j + t2j+1 2j+1a2j+1 2j = t2j+1 2j+1a2j+1 2j ,

AT and TA are not in A2,2j+1. Hence A2,2j+1 is not a left ideal and not a right
ideal. Since T(2j+1,2j+1) = T(2j,2j), the (2j + 1, 2j)-component of AT − TA is
zero. Hence AT − TA is in A2,2j+1. So A2,2j+1 is a Lie ideal. �

Example 6. Let k, j and l be natural numbers.

1) Let Bk,l = {T ∈ AlgL∞ |T(k,k) = T(k+1,k+1) = · · · = T(k+l,k+l)}. Then
Bk,l is a Lie ideal.

2) Let Bk,∞ = {T ∈ AlgL∞ |T(k,k) = T(k+1,k+1) = · · · }. Then Bk,∞ is a
Lie ideal and B1,∞ = A1.

3) Let ∧ = {(ki, li) | ki + li < ki+1, i = 1, 2, . . . , n}. Then we denote
∩n
i=1Bki,li by B∧ and B∧ ∩ Bk,∞ by B∧,k,∞, where kn + ln < k.

Example 7. Let k and n be natural numbers (n > 1).

1) Let An,2k−1 = {T ∈ B2k−1,n−1 |T(2k−1,2k) = 0}. Then An,2k−1 is a Lie
ideal and A2,2k−1 = {T ∈ B2k−1,1 |T(2k−1,2k) = 0}.

2) Let An,2j+1 = {T ∈ B2j,n−1 |T(2j+1,2j) = 0}. Then An,2j+1 is a Lie
ideal and A2,2j+1 = {T ∈ B2j,1 |T(2j+1,2j) = 0}.

For k > 1,
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3) Let Cn,2k−1 = {T ∈ B2k−2,n−1 |T(2k−1,2k) = 0}. Then Cn,2k−1 is a Lie
ideal.

4) Let Cn,2j+1 = {T ∈ B2j−1,n−1 |T(2j+1,2j) = 0}. Then Cn,2j+1 is a Lie
ideal.

Example 8. Let k and j be natural numbers.

1) Let A∞,2k−1 = {T ∈ B2k−1,∞ |T(2k−1,2k) = 0}. Then A∞,2k−1 is a Lie
ideal.

2) Let A∞,2j+1 = {T ∈ B2j,∞ |T(2j+1,2j) = 0}. Then A∞,2j+1 is a Lie
ideal.

For k > 1,

3) Let C∞,2k−1 = {T ∈ B2k−2,∞ |T(2k−1,2k) = 0}. Then C∞,2k−1 is a Lie
ideal.

4) Let C∞,2j+1 = {T ∈ B2j−1,∞ |T(2j+1,2j) = 0}. Then C∞,2j+1 is a Lie
ideal.

Example 9. Let Ω be a nonempty subset of N and let

AΩ = {T ∈ AlgL∞ |T(k,k) = 0 for all k ∈ Ω}.

Then AΩ is a Lie ideal in AlgL∞.

Remark. Let k be a fixed natural number. Let Γn(Υl) be a set of finite nat-
ural numbers containing k(j) and Ω1(Ω2) be a set of infinite natural numbers
containing Γn(Υl) respectively. Then the following diagram 1 shows the rela-
tionships between Lie ideals introduced on the above examples. We will prove
them in Section 4. Each arrow between Lie ideals means set inclusion relation-
ship. The diagram holds for 2j + 1, Υl and Ω2 instead of 2k − 1, Γn and Ω1,
respectively.

Let (Γn) = {(2ki − 1, 1) | ki ∈ Γn}, (Υl) = {(2jp, 1) | jp ∈ Υl}, (Ω1) =
{(2ki − 1, 1) | ki ∈ Ω1}, (Ω2) = {(2jp, 1) | jp ∈ Ω2}. Then we have the following
diagram:

B(Ω) −→ B(Ω1) −→ B(Γn) −→ B2k−1,1 =⇒ AlgL∞

↑ ↑ ↑ ⇑ ↑

A2,Ω −→ A2,Ω1 −→ A2,Γn
−→ A2,2k−1 −→ Bk,∞

↑ ↑ ↑ ↑ ↑

A1,Ω −→ A1,Ω1 −→ A1,Γn
=⇒ A1,2k−1 =⇒ A1

↑ ↑ ↑ ⇑ ⇑

{0} −→ A0,Ω −→ A0,Ω1 −→ A0,Γn
=⇒ A0,2k−1 =⇒ A0

Diagram 1.

3. Properties of Lie ideals in AlgL∞

In this section we investigate some properties of Lie ideals in AlgL∞. The
following theorems show necessary and sufficient conditions in which a linear
manifold can be a Lie ideal in AlgL∞.
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Theorem 1. Let k be a fixed natural number. Let A be a linear manifold in

AlgL∞ such that T(2k−1,2k) = 0 for all T in A. Then A is a Lie ideal if and

only if T(2k−1,2k−1) = T(2k,2k) for all T ∈ A.

Proof. Let T = (tij) be an operator in A and A = (aij) be in AlgL∞. Since
the (2k − 1, 2k)-component of AT − TA is

a2k−1 2k(t2k 2k − t2k−1 2k−1) + t2k−1 2k(a2k−1 2k−1 − a2k 2k),

t2k−1 2k = 0 and A is a Lie ideal,

(∗) a2k−1 2k(t2k 2k − t2k−1 2k−1) = 0 for all A ∈ AlgL∞.

Since (∗) holds for all A in AlgL∞,

t2k−1 2k−1 = t2k 2k.

The converse is just 1) of Example 5. �

Theorem 2. Let j be a fixed natural number. Let A be a linear manifold in

AlgL∞ such that T(2j+1,2j) = 0 for all T in A. Then A is a Lie ideal if and

only if T(2j,2j) = T(2j+1,2j+1) for T ∈ A.

Proof. Suppose A is a Lie ideal. Let A be an operator in AlgL∞ and let T be
an operator in A. Since the (2j + 1, 2j)-component of AT − TA is

a2j+1 2j(t2j 2j − t2j+1 2j+1) + t2j+1 2j(a2j+1 2j+1 − a2j 2j),

t2j+1 2j = 0 and A is a Lie ideal,

(∗∗) a2j+1 2j(t2j 2j − t2j+1 2j+1) = 0 for all A ∈ AlgL∞.

Since (∗∗) holds for all A in AlgL∞,

t2j 2j = t2j+1 2j+1.

The converse is just 2) of Example 5. �

We can derive the following theorems in a similar way as the above theorem.

Theorem 3. Let k1, k2, . . . , kn and j1, j2, . . . , jl be different natural numbers.

1) Let A be a linear manifold in AlgL∞ such that T(2ki−1,2ki) = 0 (i =
1, 2, . . . , n) for all T ∈ A. Then A is a Lie ideal if and only if

T(2ki−1,2ki−1) = T(2ki,2ki) (i = 1, 2, . . . , n)

for all T in A.

2) Let A be a linear manifold in AlgL∞ such that T(2jp+1,2jp) = 0 (p =
1, 2, . . . , l) for all T ∈ A. Then A is a Lie ideal if and only if

T(2jp,2jp) = T(2jp+1,2jp+1) (p = 1, 2, . . . , l)

for all T in A.

3) Let A be a linear manifold in AlgL∞ such that T(2ki−1,2ki) = 0 (i =
1, 2, . . . , n) and T(2jp+1,2jp) = 0 (p = 1, 2, . . . , l) for all T in A. Then A
is a Lie ideal if and only if T(2ki−1,2ki−1) = T(2ki,2ki) (i = 1, 2, . . . , n)
and T(2jp,2jp) = T(2jp+1,2jp+1) (p = 1, 2, . . . , l) for all T in A.
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Theorem 4. Let k1, k2, . . . and j1, j2, . . . be different natural numbers.

1) Let A be a linear manifold in AlgL∞ such that T(2ki−1,2ki) = 0 (i =
1, 2, . . .) for all T in A. Then A is a Lie ideal if and only if

T(2ki−1,2ki−1) = T(2ki,2ki) (i = 1, 2, . . .)

for all T in A.

2) Let A be a linear manifold in AlgL∞ such that T(2jp+1,2jp) = 0 (p =
1, 2, . . .) for all T in A. Then A is a Lie ideal if and only if

T(2jp,2jp) = T(2jp+1,2jp+1) (p = 1, 2, . . .)

for all T in A.

3) Let A be a linear manifold in AlgL∞ such that T(2ki−1,2ki) = 0 and

T(2jp+1,2jp) = 0 (i, p = 1, 2, . . .) for all T in A. Then A is a Lie ideal

if and only if T(2ki−1,2ki−1) = T(2ki,2ki) and T(2jp,2jp) = T(2jp+1,2jp+1)

(i, p = 1, 2, . . .) for all T in A.

4. Relationships between Lie ideals in AlgL∞

In this section we will investigate relationships between Lie ideals introduced
in the examples in Section 2. Each Lie ideal (showed in Section 2) is weakly
closed and each arrow on Diagram 1 in the previous section means an inclusion
relationship. Some arrows, indicated by “ ⇒ ”, between the two Lie ideals
mean that there is no Lie ideal between two Lie ideals connected by the arrow.
Every theorem in this section holds for 2j+1, Υl and Ω2 instead of 2k− 1, Γn

and Ω1 respectively.

Theorem 5. Let k be a fixed natural number. Let A be a linear manifold in

AlgL∞ and let A be a Lie ideal such that A0,2k−1 ⊂ A ⊂ A0. Then A =
A0,2k−1 or A = A0.

Proof. It is sufficient to show for the case k = 1, i.e., A0,1 ⊂ A ⊂ A0 ⇒
A = A0,1 or A = A0.

Assume that A 6= A0,1. Then there exists T = (tij) ∈ A such that T /∈ A0,1.
Then tii = 0 for all i ∈ N and t12 6= 0. Let A = (aij) ∈ A0. If a12 = 0, then
A ∈ A0,1 ⊂ A. If a12 6= 0, let A1 be defined by

{

A1(1,2) = 0,

A1(i,j) = aij , otherwise.

Then A1 ∈ A0,1 ⊂ A. Let T1 be defined by
{

T1(1,2) = 0,

T1(i,j) = −tij , otherwise.

Then T1 ∈ A0,1 ⊂ A. Let T2 = T + T1. Then T2 ∈ A and
{

T2(1,2) = t12,

T2(i,j) = 0, otherwise.
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Let x = a12

t12
. Then xT2 +A1 = A ∈ A. Hence A = A0. �

The following two theorems are proved in a similar way as Theorem 5.

Theorem 6. Let k be a fixed natural number and Γ2 = {k = k1, k2}.

1) If A is a Lie ideal such that A1,2k−1 ⊂ A ⊂ A1, then A = A1,2k−1 or

A = A1.

2) If A is a Lie ideal such that A0,Γ2 ⊂ A ⊂ A0,2k−1, then A = A0,Γ2 or

A = A0,2k−1.

3) If A is a Lie ideal such that A1,Γ2 ⊂ A ⊂ A1,2k−1, then A = A1,Γ2 or

A = A1,2k−1.

Theorem 7. Let k = k1 < k2 < · · · < kn. Let Γ1 = {k1}, Γ2 = {k1, k2},
Γ3 = {k1, k2, k3}, . . ., Γn = {k1, . . . , kn} and Ω1 = {k1, k2, . . .}. Then

A0,Ω1 ⊂ · · · ⊂ A0,Γn
⊂ A0,Γn−1 ⊂ · · · ⊂ A0,Γ2 ⊂ A0,2k−1 = A0,Γ1 ,

A1,Ω1 ⊂ · · · ⊂ A1,Γn
⊂ A1,Γn−1 ⊂ · · · ⊂ A1,Γ2 ⊂ A1,2k−1 = A1,Γ1 .

And there is no Lie ideal between the above two adjacent Lie ideals.

Proof. The last inclusion is proved by Theorem 5. The other inclusions are
proved in the same way. �

Theorem 8. Let k be a fixed natural number. Let A be a linear manifold

in AlgL∞ and let A be a Lie ideal such that B2k−1,1 ⊂ A ⊂ AlgL∞. Then

A = B2k−1,1 or A = AlgL∞.

Proof. It is enough to show for the case k = 1, i.e., B1,1 ⊂ A ⊂ AlgL∞ ⇒
A = B1,1 or A = AlgL∞. If A 6= B1,1, then there exists T = (tij) ∈ A such
that T /∈ B1,1. Then t11 6= t22. Let A = (aij) ∈ AlgL∞. If a11 = a22, then
A ∈ B1,1 ⊂ A. If a11 6= a12, let T1 be defined by

{

T1(1,1) = T1(2,2) = 0,

T1(i,j) = −tij , otherwise.

Let T2 = T + T1. Then T2 ∈ A.
Let A1 and A2 be defined by

{

A1(1,1) = A1(2,2) = 1,

A1(i,j) = 0, otherwise
and

{

A2(1,1) = A2(2,2) = 0,

A2(i,j) = aij , otherwise.

Then A1 and A2 are in B1,1. So A1, A2 ∈ A. Let x = a11−a22

t11−t22
and y =

t11a22−t22a11

t11−t22
. Then xT2 + yA1 +A2 = A ∈ A. Hence A = AlgL∞. �

Theorem 9. Let A be a linear manifold in AlgL∞ and let A be a Lie ideal

such that A0 ⊂ A ⊂ A1. Then A = A0 or A = A1.
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Proof. If A 6= A0, then there exists T = (tij) ∈ A such that T /∈ A0, i.e.,
tii = tjj 6= 0 for all i 6= j. Let A = (aij) ∈ A1. We define T1 and A1 as follows:

{

T1(i,i) = 0 for all i ∈ N,

T1(i,j) = −tij for i 6= j
and

{

A1(i,i) = 0 for all i ∈ N,

A1(i,j) = aij for i 6= j.

Then T1, A1 ∈ A0 ⊂ A. Let T2 = T + T1. Then T2 ∈ A and
{

T2(i,i) = t11 for all i ∈ N,

T2(i,j) = 0 for i 6= j.

Let x = a11

t11
. Then xT2 +A1 = A ∈ A. Hence A = A1. �

The following theorem is proved in the same way as Theorem 9.

Theorem 10. Let k be a fixed natural number. Let A be a Lie ideal in AlgL∞

such that A0,2k−1 ⊂ A ⊂ A1,2k−1. Then A = A0,2k−1 or A = A1,2k−1.

Theorem 11. Let Γn = {k1, . . . , kn}. Then

1) Let A be a linear manifold in AlgL∞ such that A0,Γn
⊂ A ⊂ A1,Γn

.

Then A is a Lie ideal.

2) Let A be a linear manifold in AlgL∞ such that A1,Γn
⊂ A ⊂ A2,Γn

.

Then A is a Lie ideal.

Proof. 1) Let A = (aij) ∈ AlgL∞ and T = (tij) ∈ A. Then (AT−TA)(2ki−1,2ki)

= a2ki−12ki
(t2ki2ki

− t2ki−12ki−1) + t2ki−12ki
(a2ki−12ki−1 − t2ki2ki

) = 0 for all
i = 1, 2, . . . , n and (AT −TA)(k,k) = 0 for all k ∈ N. So AT −TA ∈ A1,Γn

⊂ A.
Hence A is a Lie ideal.

2) The proof is the same as 1). �

Theorem 12. Let k be a fixed natural number.

1) A1,2k−1 ⊂ A3,2k−1 ⊂ A2,2k−1 and A1,2k−1 ⊂ C3,2k−1 ⊂ A2,2k−1 (when
k 6= 1).

2) Let A be a Lie ideal such that A3,2k−1 ⊂ A ⊂ A2,2k−1. Then A =
A3,2k−1 or A = A2,2k−1.

3) Let A be a Lie ideal such that C3,2k−1 ⊂ A ⊂ A2,2k−1 (when k 6= 1).
Then A = C3,2k−1 or A = A2,2k−1.

4) A1,2k−1 ⊂ A∞,2k−1 ⊂ · · · ⊂ A4,2k−1 ⊂ A3,2k−1 and A1,2k−1 ⊂ C∞,2k−1

⊂ · · · ⊂ C4,2k−1 ⊂ C3,2k−1.

Proof. 1) and 4) are obvious and we prove only 2).
2) It is enough to prove this for the case k = 1. Let A 6= A3,1 and let

T = (tij) ∈ A such that T /∈ A3,1. Since T ∈ A ⊂ A2,1, t11 = t22 6= t33. Let T1

be defined by
{

T1(1,1) = T1(2,2) = T1(3,3) = −t11,

T1(i,j) = −tij , otherwise.
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Then T1 ∈ A3,1 ⊂ A. Let T2 = T + T1. Then T2 ∈ A and
{

T2(3,3) = t33 − t11,

T2(i,j) = 0, otherwise.

Let A = (aij) ∈ A2,1. If a11 = a22 = a33, then A ∈ A3,1 ⊂ A. If a11 = a22 6=
a33, let x = a33−a11

t33−t11
. Then xT2 ∈ A and

{

xT2(3,3) = a33 − a11,

xT2(i,j) = 0, otherwise.

Let A1 be defined by
{

A1(1,1) = A1(2,2) = A1(3,3) = a11,

A1(i,j) = aij , otherwise.

Then A1 ∈ A3,1 ⊂ A and A = A1 + xT2 ∈ A. Hence A = A2,1.
3) It is proved in a similar way as 2). �

Theorem 13. Let k be a fixed natural number. Let A be a Lie ideal in AlgL∞

such that A2,2k−1 ⊂ A ⊂ B2k−1,1. Then A = A2,2k−1 or A = B2k−1,1.

Proof. It is sufficient to show for the case k = 1, i.e., A2,1 ⊂ A ⊂ B1,1 ⇒
A = A2,1 or A = B1,1. Suppose that A2,1 6= A. Let T = (tij) ∈ A and
T /∈ A2,1. Then t12 6= 0, t11 = t22. Let A = (aij) ∈ B1,1. Then a11 = a22.
If a12 = 0, then A ∈ A2,1 ⊂ A. If 12 6= 0, let we define T1 by











T1(1,1) = T1(2,2) = −t11,

T1(1,2) = 0,

T1(i,j) = −tij , otherwise.

Then T1 ∈ A2,1 ⊂ A. Let T2 = T + T1. ThenT2 ∈ A and
{

T2(1,2) = t12,

T2(i,j) = 0 for (i, j) 6= (1, 2).

Let x = a12

t12
and let A1 be defined by











A1(1,1) = A1(2,2) = a11,

A1(1,2) = 0,

A1(i,j) = aij , otherwise.

Then A1 ∈ A2,1 and A = A1 + xT2 ∈ A. So A = C1,1. �

Theorem 14. Let B = A2,1 ∩ B3,1 and let Γ2 = {1, 2}.
1) A2,Γ2 ⊂ B ⊂ A2,1.

2) Let A be a Lie ideal such that B ⊂ A ⊂ A2,1. Then A = B or A = A2,1.

3) Let A be a Lie ideal such that A2,Γ2 ⊂ A ⊂ B. Then A = A2,Γ2 or A = B.



360 JOO HO KANG

Proof. 2) Assume that B 6= A. Then there exists T = (tij) ∈ A such that
T /∈ B. Then t12 = 0, t11 = t22 and t33 6= t44. Let A = (aij) ∈ A2,1. Then
a11 = a22 and a12 = 0.

Case 1. If a33 = a44, then A ∈ B ⊂ A.
Case 2. Assume that a33 6= a44. Then let A1 be defined by

{

A1(3,3) = A1(4,4) = −t44,

A1(i,j) = aij , otherwise.

Then A1 ∈ B ⊂ A. Let T1 and T ′

1 be defined by
{

T1(3,3) = T1(4,4) = −t44,

T1(i,j) = −tij , otherwise
and

{

T ′

1(3,3) = T ′

1(4,4) = −t33,

T ′

1(i,j) = −tij , otherwise,

and T2 = T + T1 and T3 = T + T ′

1. Then T2, T3 ∈ A. So A2 = a33

t33−t44
T2 ∈ A

and A3 = a44

t44−t33
T3 ∈ A. Hence A = A1 +A2 +A3 ∈ A. Therefore A = A2,1.

3) Assume that A2,Γ2 6= A. Then there exists T = (tij) ∈ A such that
T /∈ A2,Γ2 . Then t11 = t22, t12 = 0, t33 = t44 and t34 6= 0. Let A = (aij) ∈ B.
Then a11 = 0, a11 = a22 and a33 = a44. Let A1 be defined by

{

A1(3,4) = 0,

A1(i,j) = aij , otherwise.

Then A1 ∈ A2,Γ2 ⊂ A. Let T1 be defined by
{

T1(3,4) = 0,

T1(i,j) = −tij , otherwise.

Then T1 ∈ A2,Γ2 ⊂ A. Let T2 = T + T1. Then T2 ∈ A. Since t34 6= 0, let
A2 = a34

t34
T2. Then A2 ∈ A and A = A1 +A2 ∈ A. Therefore B = A. �

The above theorem holds for any {k1, k2} instead of {1, 2} and can be gen-
eralized as the following theorem.

Theorem 15. Let k = k1 < k2 < · · · < kn. Let Γ1 = {k = k1}, Γ2 =
{k1, k2}, Γ3 = {k1, k2, k3}, . . . ,Γn = {k1, . . . , kn} and Ω1 = {k1, k2, . . .}. Let

B = A2,2ki−1 ∩ B2ki+1−1,1. Then

1) A2,Ω1 ⊂ · · · ⊂ A2,Γn
⊂ A2,Γn−1 ⊂ · · · ⊂ A2,Γ2 ⊂ A2,2k−1 = A2,Γ1 .

2) Let A be a Lie ideal and B ⊂ A ⊂ A2,Γi−1 . Then A = B or A =
A2,Γi−1 .

3) Let A be a Lie ideal and A2,Γi
⊂ A ⊂ B. Then A = A2,Γi

or A = B.
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