DOI QR코드

DOI QR Code

평판재하시험, 흙강성측정기 및 동적콘관입시험기를 이용한 노상토의 탄성계수 비교

Comparison of Elastic Moduli of Subgrade Soils Using Plate Loading Test, Soil Stiffness Gauge and Dynamic Cone Penetrometer

  • 김규선 (삼성물산(주) 건설부문 기술개발실)
  • Kim, Kyu-Sun (Construction Technology Division, Samsung C&T Corp.)
  • 투고 : 2015.01.25
  • 심사 : 2015.02.16
  • 발행 : 2015.03.31

초록

본 연구는 노상토의 다짐특성 평가를 위해 특성이 다른 세 가지 강성측정 시험법으로 측정한 탄성계수의 상관관계 및 연관성에 대해 논의하였다. 미소변형률(${\approx}0.001%$) 범위의 흙강성측정기(SSG), 중변형률(${\approx}0.01{\sim}0.1%$) 범위의 정적 평판재하시험(PLT), 관입저항을 이용하는 동적콘관입시험기(DCP)가 탄성계수 측정에 이용되었다. 변형률 범위가 다른 시험방법에 의해 측정한 탄성계수를 실무에 적용하기 위해서는, 각각의 측정치에 대한 상관관계 및 연관성에 대해 사전에 파악되어야 한다. 국내 외 여러 조건의 노상토에 대해서 세 가지 방법을 이용하여 측정한 탄성계수($E_{SSG}$, $E_{PLT}$, $E_{DCP}$)를 비교 분석한 결과에 따르면, 흙의 종류 및 응력 조건에 따라 각 방법에 의해 측정된 탄성계수가 상이한 결과를 나타내었다. 전체 수집된 데이터 중 시멘트 처리토를 제외한 일반적인 노상토를 대상으로 한 상관성 분석결과, 정적 탄성계수($E_{PLT}$)는 동적 탄성계수($E_{SSG}$) 대비 60~80%의 크기를 나타나는 것으로 평가되었다. 시멘트 처리토와 같은 특이 토질은 정적 탄성계수($E_{PLT}$) 측정 시 구속압의 영향을 크게 받기 때문에, 다른 일반 토질과 상관관계 비교시 응력보정을 수행하여야 한다. 또한, 동적콘관입시험 결과를 이용하여 탄성계수($E_{DCP}$) 예측 시, 200MPa 이내의 범위에서 탄성계수 데이터가 좀더 신뢰도 높은 상관관계를 나타내었다.

This paper describes the correlation and relationship between elastic moduli measured by three stiffness measurement methods with different mechanical characteristics to evaluate the compaction characteristics of subgrade soils. The Soil Stiffness Gauge (SSG) with very small strain (${\approx}0.001%$) ranges, static Plate Loading Test (PLT) with mid-level strain (${\approx}0.01{\sim}0.1%$) ranges, and Dynamic Cone Penetrometer (DCP) using penetration resistance were implemented to measure the elastic modulus. To use the elastic modulus measured by different measurement methods with a wide range of strain in practice, it is required to identify the correlation and relationship of measured values in advance. The comparison results of the measured elastic moduli ($E_{SSG}$, $E_{PLT}$, $E_{DCP}$) using the three measurement methods for domestic and overseas subgrade soils under various conditions indicate that the evaluated elastic modulus relies on the types of soils and the level of stress condition. The correlation analysis of the measured elastic moduli except the data of cement treated soils indicates that the static elastic modulus ($E_{PLT}$) is evaluated as about 60 to 80% of the dynamic elastic modulus ($E_{SSG}$). Unusual soils such as cement treated soils are required to be corrected by the stress correction during the correlation analysis with typical soils, because these types of soils are sensitive to the stress condition when measuring the static elastic modulus ($E_{PLT}$) of soils. In addition, when considering the use of DCP data for the evaluation of the elastic modulus ($E_{DCP}$), the measured data of the elastic modulus less than 200 MPa show more reliable correlation.

키워드

참고문헌

  1. Abu-Farsakh, M. Y., Nazzal, M. D., Alshibli, K., and Seyman, E. (2005), "Application of Dynamic Cone Penetrometer in Pavement Construction Control", Journal of Transportation Research Board, No.1913, pp.53-61.
  2. Alshibli, K., Abu-Farsakh, M., and Seyman, E. (2005), "Laboratory Evaluation of the Geogauge and Light Falling Weight Deflectometer as Construction Control Tools", Journal of Material Civil Engineering, Vol.17, No.5, pp.560-569. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(560)
  3. Chen, D.-H., Lin, D.-F., Liau, P.-H., and Bilyeu, J. (2005), "A Correlation Between Dynamic Cone Penetrometer Values and Pavement Layer Moduli", Geotechnical Testing Journal, Vol.28, No.1, pp.42-49.
  4. Choi, J. S. (2008), "Fundamental Study on Establishing the Subgrade Compaction Control Criteria of DCPT with Laboratory Test and In-situ Tests", Journal of the Korean Society of Road Engineers, Vol.10, No.4, pp.103-116 (in Korean).
  5. Clayton, C. R. I. (2011), "Stiffness at Small Strain: Research and Practice", Geotechnique, Vol.61, No.1, pp.5-37. https://doi.org/10.1680/geot.2011.61.1.5
  6. Hardin, B. O. and Drenevich, V. P. (1972), "Shear Modulus and Damping in Soils: Measurement and Parameter Effects", Journal of the Soil Mechanics and Foundations Division, Vol.98, No.6, pp.603-624.
  7. Fiedler, S., Nelson, C., Berkman, E. F., and DiMillio, A. (1998), "Soil Stiffness Gauge for Soil Compaction Control", Public Road, Vol.61, No.5, pp.5-10.
  8. Kessler Soils Engineering Products, Inc. (2010), KSE DCP K-100 Models User's Manual.
  9. Kim, K.-S., Woo, W., Lee, C., and Lee, W. (2013), "Laboratory Soil Box Tests for Compaction Characteristics of Foundation Soils using Nondestructive and Penetration Tests", Journal of Korean Society of Hazard Mitigation, Vol.13, No.5, pp.93-101 (in Korean). https://doi.org/10.9798/KOSHAM.2013.13.5.093
  10. Kim, D.-S., Seo, W.-S., and Kweon, G.-C. (2005), "Evaluation of Field Nonlinear Modulus of Subgrade Soils Using Repetitive Static Plate Bearing Load Test", Journal of Korean Geotechnical Society, Vol.21, No.6, pp.67-79 (in Korean).
  11. Kim, K.-S., Kim, D., Fratta, D., and Lee, W. (2011), "Physical and Mechanical Characteristics of Subgrade Soil using Nondestructive and Penetration Tests", Journal of Korean Society of Civil Engineers, Vol.31, No.1C, pp.19-27 (in Korean).
  12. Konrad, J. M. and Lachance, D. (2001), "Mechanical Use of In Situ Penetration Tests in Pavement Evaluation", Canadian Geotechnical Journal, Vol.38, No.5, pp.924-935. https://doi.org/10.1139/t01-024
  13. Lee, I. K., White, W., and Ingles, O. G. (1983), Geotechnical Engineering, Boston, Pitman.
  14. Lenke, L. R., McKeen, R. G., and Grush, M. P. (2003), "Laboratory Evaluation of GeoGauge for Compaction Control", Transportation Research Record, No.1849, pp.20-30.
  15. Ministry of Construction and Transportation (MCT) (2004), Korean Pavement Research Program, No. KPRP-E-04, Phase 1-3, Final Report (in Korean).
  16. Ministry of Land, Transport and Maritime Affairs (MLTMA) (2011), Integrated Guidelines for Pavement for Highway Pavement (in Korean).
  17. Moore, D. and McCabe, G. (2005), Introduction to the Practice of Statistics, 5th ed., W.H. Freeman.
  18. Nazzal, M. D. (2003), Field Evaluation of In-situ Test Technology for QC/QA During Construction of Pavement Layers and Embankments, Master's Thesis, Louisiana State University, Barton Rouge, LA, USA.
  19. Poulos, H. G. and Davis, E. H. (1974), Elastic Solutions for Soil and Rock Mechanics, John Wiley & Sons.
  20. Powell, W. D., Potter, J. F., Mayhew, H. C., and Nunn, M. E. (1984), The Structural Design of Bituminous Roads, TRRL Report LR 1132, 62 p.
  21. Santamarina, J. C., Klein, K., and Fam, M. (2001), Soils and Waves, John Wiley & Sons, Chichester, UK.
  22. Sawangsuriya, A., Edil, T. B., and Bosscher, P. J. (2003), "Relationship Between Soil Stiffness Gauge Modulus and Other Test Moduli for Granular Soils", Journal of the Transportation Research Board, No.1849, 3-10.
  23. Sawangsuriya, A., Bosscher, P. J., and Edil, T. B. (2006), "Application of Soil Stiffness Gauge in Assessing Small-strain Stiffness of Sand with Different Fabrics and Densities", Geotechnical Testing Journal, Vol.29, No.3, pp.207-216.
  24. Webster, S. L., Grau, R. H., and Williams, R. P. (1992), Description and Application of Dual Mass Dynamic Cone Penetrometer, U.S. Army EngineerWaterways Experiment Station, Instruction Report, No. GL-92-3.

피인용 문헌

  1. 원위치 동적강성 분석기의 개발 및 성능평가 vol.61, pp.2, 2015, https://doi.org/10.5389/ksae.2019.61.2.041